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Abstract

This paper presents the theoretical view and summary of
the simulation results on the proposed use of round beams
for increasing the luminosity in e+e� colliders. Some other
effects, related with the particle’s energy change in the
fields of opposite beam, are taken into account. The inter-
esting consequence of the longitudinal kick from opposite
beam, i.e. dependence of the beam-beam effects on the sign
of momentum compaction factor, is discussed.

All the presented simulation results are obtained with the
modified VEPP-2M optics adapted for the round beam op-
eration.

1 ROUND COLLIDING BEAMS

The basic parameter of a collider is its luminosityL which
in the case of short bunches is determined by the formula:
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where�z ; �x are the space charge parameters whose maxi-
mum values are limited by the beam-beam effects;�x is the
horizontal emittance of the beams,�z; �x are their r.m.s.
sizes at the interaction point (IP), and�z is the vertical�-
function at the IP;f is the frequency of collisions at this IP,
re is the classical electron radius,
 is the relativistic factor.

The space charge parameter per interaction is:
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whereN is the number of particles in the opposite bunch.
Colliding bunches with maximum values of�z ' 0:05 and
�x ' 0:02 are experimentally obtained on the VEPP-2M
collider.

In the Novosibirsk�-factory project, for attaining the
high luminosity it is proposed to use colliding beams with
round transverse cross-sections (just “round beams” in
what follows) [1, 2]. In this case, the luminosity formula
has the form:
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Because of the X-Z symmetry, the space charge parame-
ters are now the same in the two directions, so the horizon-
tal parameter can be strongly enhanced. The evident advan-
tage of round colliding beams is that with the fixed particle
density, the tune shift from the opposite bunch becomes
twice smaller than that in the case of flat colliding beams.
Also well-known feature of round beams is that the linear

beam-beam tuneshift becomes independent of the longitu-
dinal position in the bunch thereby weakening the action of
synchro-betatron resonances.

What does the round beam mean in practice?

1. Small and equal�-functions�0 = �x; �z at the IP.

2. Equal beam emittances�x; �z.

3. Equal betatron tunes�x; �z and no betatron coupling
in the arcs.

4. Small and positive fractional tunes.

Requirements 1–3 are satisfied by the use of a strong
solenoidal beam focusing in the interaction straight. At
each passage, the longitudinal fieldHl, with an integral
along the straight sectionHll = �HR; rotates the trans-
verse oscillation plane over90�, exchanges rˆoles of the two
betatron modes, and thereby provides their full symmetry.
Besides, the rotational symmetry of both the solenoidal fo-
cusing and the kick from the round opposite beam, comple-
mented with the X-Z symmetry of the betatron transfer ma-
trix between the collisions, result inan additional integral
of motion. Namely, the longitudinal component of the an-
gular momentum is conserved, provided that conditions 1–
3 are met. Thus the transverse motion becomes equivalent
to a one-dimensional motion. For the beam-beam effects,
elimination of all betatron coupling resonances is of crucial
importance, since they are believed to cause the beam life-
time degradation and blow-up. Moreover, it is possible to
make the motion in the field of round opposite bunch very
close to integrable with strong suppression of the strengths
of all transverse resonances [3].

Item 4 is also important for the attainment of large values
of the space charge parameter�max.

The luminosity value requiredL = 2�3 �1033 cm�2s�1

is attained at�max ' 0:1 in an11� 11 multi-bunch mode
(f ' 140MHz) at presently available values of�0 ' 1 cm,
emittances� ' 1:25�10�5 cm � rad and a “moderate” bunch
intensity ofN ' 5 � 1010.

1.1 Longitudinal motion

For an increase in the�-factory luminosity, a lattice is en-
visaged with values of�0 almost as small as the bunch
length�s. In this case, the particle energy change over the
IP passage becomes important. If�s � �0, for particles
with small amplitudes the longitudinally defocusing action
excerted by the opposite beam is equivalent to a reduction
�U in the accelerating voltage amplitude [4]:
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HereR is the average radius of the machine andq is the RF
harmonic number. Therefore, the incoherent longitudinal
motion will be unstable if this value becomes equal to the
cavity voltage.

For computer simulations of the beam-beam effects it
is important to use correct kicks with both the longitudinal
and transverse components, otherwise the iterated map will
be nonsymplectic.

There is another important issue, related with the par-
ticle energy change in the fields of opposite beam. For
a small positive betatron phase advance (near the integer
resonance), and for the usual sign of the momentum com-
paction, it is possible for particles with a positive energy
offset to slow down their relative motion so as their co-
ordinates would not change between the consecutive col-
lisions. Then their angles and energy offsets will rise to-
gether forming an outward phase space flow to large syn-
chrotron and betatron amplitudes. For the negative momen-
tum compaction� < 0 this can never happen, such a flow
does not occur.

A more detailed study of this effect is presented in
Ref.[5], the simulation there confirms arguments in favour
of the negative momentum compaction.

Another argument in favour of� < 0 is that both the co-
herent and incoherent synchrotron oscillations can no more
become unstable, because in this case the opposite beam
action adds to the longitudinal focusing [6].

The Novosibirsk�-factory lattice envisages an option to
vary the momentum compaction factor between�0:02 and
0:06 thus enabling an optimization of the longitudinal mo-
tion parameters for the realistic collider performance.

2 SIMULATION FOR VEPP-2M WITH
ROUND BEAMS

The computer simulation of the beam-beam effects is per-
formed with a special code [7] where, in particular, the par-
ticle distributions over their 6D phase space are obtained
as a function of the opposite bunch intensity. The bunch is
represented by a set of thin nonlinear lenses, each changing
both transverse angles of a witness particle and its energy,
according to the following relation [6]:
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Herex; x0; z; z0 are the coordinates and angles of the be-
tatron motion,r2 = x2 + z2. The collision-to-collision
map is formed by this multi-slice beam-beam kick followed
by linear transformations and sextupole kicks according to
the collider lattice. The smaller changes of particle coor-
dinates and angles caused by the synchrotron radiation are
included to provide for the radiative damping and quantum
excitation of the synchrotron and betatron oscillations. All
the parameters are first tuned so as to form the correct equi-
librium distribution of particles as it is in the single beam
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Figure 1: Emittance of the weak beam versus the space
charge parameter�. The lower curve corresponds to an
ideal and linear optics in the arcs. Upper curves include the
effect of the arc sextupoles: solid line — the sextupoles
only; dash line — plus slightly different x and z tunes;
dash-dot line — plus a realistic x-z coupling in the arcs;
dot line — plus the betatron tunes separated at 1/2 the
synchrotron tune and with the solenoid rotation angle of
1:001 � 90�.

mode. Then the distribution with the collisions on is built
from the statistics collected over many damping times, so
that one can expect reliable results at not too large ampli-
tudes.

2.1 Beam dimensions in the “weak-strong”
model

All the main results of the simulations are presented in
Fig. 1. The lower solid line shows the round beam emit-
tance in the case where the only nonlinearity present in the
machine is the nonlinear field of the round opposite bunch.
One can see that the beam blow-up here is much weaker
than what is common for flat colliding beams.

All the other lines show the emittance growth with� af-
fected by the sextupolar nonlinearities in the realistic ma-
chine and by different small perturbations of the perfect
“round beam mode” optics (see the caption). It is evident,
that the beam emittance growth is dominated by the sex-
tupole effect in this case, and for� ' 0:2 the beam blow-up
is related with the 1/3 resonance.

In Fig. 2 one can see the r.m.s. beam size for the case
of round beam with the sextupoles (solid line) and the�-
function (dashed line) at the IP, as reduced by the linear
fields of the opposite beam. The squeeze in dimensions
(notwithstanding the emittance growth) is due to the focus-
ing action of the opposite round beam.
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Figure 2: Variation of the weak beam size and relative�0
vs. the strong beam current.

2.2 “Flip-flop” effect

The next step we can do is to investigate the incoherent
“stong-strong” effect with certain assumptions and using
data on the beam size variation from the “weak-strong”
simulation. The main assumption is that the beam dimen-
sion depends on the maximum density in the (center of)
opposite beam. This is more or less validated by the sim-
ulation results and was exploited earlier (see [8]). Then
we can numerically find the sizes of both strong colliding
bunches by the iterative use of the weak-strong model re-
sults as summarized in Fig. 1 (see the upper solid line).
The result of this calculation is presented in Fig. 3. One
can see, that the beam size dependence on� for the two
colliding bunches splits into two branches above� ' 0:15.

2.3 Other “round beam operation” modes

There are a few possibilities to modify the existing VEPP-
2M optics for the round beam operation. All the above
simulations are made with one pair of solenoids rotating
the betatron oscillation planes over an angle of�=2 while
the other pair rotates over��=2. Taking into account the
symmetry of the arcs we have equal betaron tunes on the
main difference resonance line. We can reverse the fields
in one pair of solenoids and we get the so-called “M¨obius
ring” [2, 9]: two twists per two collisions, and the betatron
tunes here differ by 1. One more option comes from the
possibility of switching the opposite fields in two solenoids
of one pair, so as to have only one�90� twist over the
circumference with 2 IP’s. The latter case showed much
worse beam blow-up in simulation in comparision with the
previous cases, and the reason is that the tune difference
of 1/2 now disfavours the safe accomodation of the tune
footprint between resonance lines on the tune diagram, so
the action of resonances amplifies.
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Figure 3: Branching of the beam sizes above the flip-flop
threshold. (Dashed line shows the weak-strong size depen-
dence from Fig.2, used as a starting point for the iterations).

3 CONCLUSION

The results of simulations have strengthened the concept
of round colliding beams. No beam-beam blow-up thresh-
old is seen for round beams with the parameters close to
the design ones. The beam emittance growth at� > 0:1 is
mostly related with nonlinearities of the machine optics, so
we hope that it will be possible to achieve a higher luminos-
ity by reducing the action of nonlinear lattice resonances.
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