
SINGLE PARTICLE LINEAR AND NONLINEAR DYNAMICS∗

Yunhai Cai† , Stanford Linear Accelerator Center
Stanford University, Menlo Park, CA 94025, USA

Abstract

I will give a comprehensive review of existing particle
tracking tools to assess long-term particle stability for small
and large accelerators in the presence of realistic magnetic
imperfections and machine misalignments. The empha-
sis will be on the tracking and analysis tools based upon
the differential algebra, Lie operator, and “polymorphism”.
Using these tools, a uniform linear and non-linear analysis
will be outlined as an application of the normal form.

INTRODUCTION

Computational tools play an important role in the design
and operation of modern accelerators which are pushed to
the very limits of their performance. During the design
stage, the computer programs are routinely used to match
the beam optics, compensate for the chromatic effects, an-
alyze the machine tolerance, and estimate the stability of a
single particle. In commissioning and operation, the codes
are used to build realistic accelerator models, control the
closed orbit, and correct linear optics.

Since the physics of single-particle dynamics starts from
the Lorentz force and the relativistic equations of motion,
all computer programs that describe the motion of charged
particles in accelerators have the same description given
the electric and magnetic field. They can differ only when
physical approximations are made for magnetic elements in
the machine. Hence, we can classify these computer pro-
grams according to what kind of presentations are chosen
for the magnetic elements. Generally speaking, there are
three such presentations: Taylor map [1], Lie factors [2],
and symplecitc integrators [3]. Indeed they provide almost
all engines in commonly used accelerator codes; for exam-
ple, Lie factors in MARYLIE [4], Taylor map in MAD [5],
and Ruth integrator [6] in LEGO [7].

It is well known that these presentations can be trans-
formed from one to another. For instance, the differential
algebra [8] provides us an efficient and accurate method to
extract a truncated Taylor expansion from symplectic inte-
grators. Then the Taylor map can be transformed into the
exponential factors using the Dragt-Finn procedure [9].

In their abstract forms, all three presentations are perfect
for tracking a charged particle through a lattice of magnetic
elements. In practice however, both Taylor map and Lie op-
erator have to be truncated to a certain order in terms of the
canonical variables during the evaluation of the map. The
truncation causes the violation of the symplecticity, which
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is the fundamental underlining symmetry of the Hamilto-
nian system. This violation of symmetry could lead to ar-
tificial growth or damping of the amplitude of the particle
trajectory. As a result, the codes based on the truncated
transfer maps can not be reliably used to estimate the sta-
bility of a particle in circular accelerators.

On the other hand, the explicit canonical integrator al-
lows us to exactly evaluate an approximated Hamiltonian
at each integration step. These solvable solutions preserve
the symplecticity of the system. Since the numbers of the
solvable solutions are very limited, the engines of the codes
are relatively easy to describe and understand. In short,
symplecticity and simplicity are the main reasons why the
codes based on the explicit canonical integrators have be-
come popular recently. Modern codes using these integra-
tors are the main subject in this paper.

In the first section, we will introduce a Hamiltonian for
a single particle in static magnetic field and the general
Lie transformation that is associated with the Hamiltonian
system. Then we will discuss solvable solutions and sym-
plectic integrators. Finally we will outline a general and
uniform approach to both linear and nonlinear analysis of
lattices with periodic magnetic elements.

HAMILTONIAN

In a planar curved coordinate system characterized by
radius of curvature ρ, the Hamiltonian, using the distance
s along the curve as the independent variable for a charged
particle moving in a static magnetic field, is given by: [10]
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Figure 1: The planar curved coordinate system.

H(x, px, y, py, δ, l; s) = −as −
(1 +

x

ρ
)
√

(1 + δ)2 − (px − ax)2 − (py − ay)2,(1)
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where ax,y,s = eAx,y,s/cp0 are scaled components of the
vector potential along axis x,y,s, respectively; px, px are the
transverse canonical momenta scaled by a reference mo-
mentum p0, δ = (p−p0)/p0, and l = vt is the path length.
Note that the Hamiltonian in Cartesian coordinates can be
obtained simply by taking the limit as ρ→∞ in Eq. (1).

Formally, the solution of the Hamiltonian’s equations
from the initial canonical coordinates z(s1) to the final ones
z(s2) can be expressed as

z(s2) = Se
−
∫

s2

s1
:H(z,s):ds

z(s1)

≡
ds→0∏

s1<s<s2

(e−:H(z,s):ds)z(s1). (2)

Here the infinitesimal Lie transformation: e−:H(z,s):ds is
defined using the Poisson brackets [2] and the symbol S
denotes the s-ordered product similar to the time-ordered
product in quantum field theory, but with an opposite or-
dering to keep the convention consistent with mapping,
namely, smaller s on the left.

If the Hamiltonian does not explicitly depend on s, the
product of infinitesimal transformations can be combined
into a single Lie transformation,

z(s2) = e−:H(z):Lz(s1), (3)

where L = s2−s1. It can be applied to the body of magnet
where the field is constant with respect to s.

A SECTOR BEND

Since the bending magnets, which guide the charged par-
ticles circulating in the ring, are the most common ele-
ments in accelerators, let’s take a horizontal dipole mag-
net with uniform field B0 as our starting point. By prop-
erly choosing a gauge [11], we have Ax = Ay = 0 and
As = −B0x −B0x

2/2ρ. Substituting the vector potential
into Eq. (1), we obtain the Hamiltonian of a sector bend,

Hb(z) = b0x+b0
x2

2ρ
−(1+

x

ρ
)
√

(1 + δ)2 − p2
x − p2

y, (4)

where b0 = eB0/p0c. Though the Hamiltonian seems
complicated, its equations are solved exactly [12]. Noting

ps(px, py) =
√

(1 + δ)2 − px2 − p2
y, the solution is

xf =
1
b0
ps(pfx, py)−

ρ

b0

dpfx
ds

− ρ

pfx = px cos(
s

ρ
) + [ps(px, py)− b0(ρ+ x)] sin(

s

ρ
)

yf = y +
py
b0

(
s

ρ
+ φ)

pfy = py

δf = δ

lf = l +
(1 + δ)
b0

(
s

ρ
+ φ), (5)

where

φ = arcsin(
px

ps(0, py)
)− arcsin(

pfx
ps(0, py)

).

Since we did not use the so called the paraxial approxima-
tion, which assumes that px and py are much smaller than 1
and expand the square root in the Hamiltonian, this solution
is applicable even to extremely small rings.
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Figure 2: Two periodical orbits (x0 = 0, p0
x = 0, 0.2, py =

δ = 0, and 1/b0 = ρ = 1m) as solutions of Eq. (4) in the
global coordinate system.

Although the solution is complicated in the local curved
coordinate system, it describes the well-known spiral mo-
tion of a charged particle in a constant magnetic field. As
plotted using Eqs. (5) in Fig 2, two particles execute cy-
clotron motion periodically. This system is integrable and
the nonlinear kinematic terms in Eq. (4) themselves do not
lead to any nonlinear resonances to the system.

SYMPLECTIC INTEGRATORS

One of most important achievements in the history
of modern accelerator physics was the discovery of the
alternating-gradient principle [11]. That principle leads us
to introduce quadrupole magnets into circular accelerators.
To describe the magnetic field inside a quadrupole magnet
or other type of magnets we use the harmonic expansion,

By + iBx =
∑
n=1

(bn + ian)(x+ iy)n−1, (6)

where bn, an are the normal and skew components respec-
tively. Eq. (7) also describes the magnetic errors inside
the body of magnets. For instance, b2 is the quadrupole
component and b3 presents a normal sextupole component
which usually is the largest error in a dipole magnet. The
corresponding vector potential is Ax = Ay = 0 and

Ams (x, y) = −Re(
∑
n=1

1
n

(bn + ian)(x + iy)n). (7)

Using this vector potential, along with the one for the
perfect sector bend in the previous section, we have the
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Hamiltonian for realistic bending magnets including the
multipole components

H(z) = Hb(z) +Hm(x, y), (8)

where Hm(x, y) = −eAms (x, y)/p0c. In general, this
Hamiltonian system is not solvable and some kind of ap-
proximation has to be made to solve Hamiltonian’s equa-
tions.

Note that Hm(x, y) itself can be solved because it de-
pends only on the coordinates not on the canonical mo-
menta. The momenta change due to Hm(x, y) is com-
monly called a kick. Based on the separately solvable
Hamiltonian systems Hb(z) and Hm(x, y), one can con-
struct a second-order symplectic integrator by lumping the
integrated kick at the middle of the magnet. Expressing the
approximation in terms of Lie transformations, we have

e−:H:L = e−:Hb:
L
2 e−:Hm:Le−:Hb:

L
2 +O(L3), (9)

Here L = θρ is the arc length of the sector magnet and θ
is the bending angle. The error due to this approximation
is on the order of L3, which is easily estimated using the
Baker-Cambell-Hausdorf formula [2]

e:f :e:g: = e:f :+:g:+ 1
2 [:f :,:g:]+..., (10)

here the bracket [,] denotes the Poisson bracket.
To reduce the error further, one can first divide the mag-

net into many identical segments and then use the integrator
for each segment. It is worth noting that, in the limit of an
infinite number of segments, the residual error reduces to
an zero and the approximated solution becomes the exact
one.

In general, it is an approximate solution but preserves the
simplecticity during the integration because the solutions
of both Hb’s and Hm’s are symplectic.

However, the way to build second-order integrators from
the Hamiltonian in Eq. (8) is far from unique. In fact, we
can split it into three solvable ones as following

H(z) = Hd +Hy +Hk, (11)

where

Hd = −
√

(1 + δ)2 − p2
x − p2

y,

Hy = −x
ρ

√
(1 + δ)2 − p2

x − p2
y,

Hk = b0x+ b0
x2

2ρ
− eAms (x, y)/p0c. (12)

It is obvious that Hd and Hk are solvable since they either
depend on the coordinate or its conjugate momentum but
not on both. The solution of the Hy’s is not so trivial. One

can start to solve px and ps =
√

(1 + δ)2 − p2
x − p2

y and

then use the fact that xps is a constant of the motion. The
solution is

xf =
xps

cos( sρ)[ps − px tan( sρ)]
,

pfx = px cos(
s

ρ
) + ps sin(

s

ρ
),

yf = y +
xpy tan( sρ )

[ps − px tan( sρ)]
,

pfy = py,

δf = δ,

lf = l +
x(1 + δ) tan( sρ)

[ps − px tan( sρ)]
. (13)

This solution can be interpreted [13] as a rotational Lie
transformation around the y axis with an angle −s/ρ.
Based on these solvable solutions, we obtain another
second-order integrator

e−:H:L = e−:Hd: L
2 e−:Hy : L

2 e−:Hk:L

e−:Hy : L
2 e−Hd: L

2 +O(L3). (14)

Here, once again, we derive the main algorithms discovered
first in TEAPOT [14]. e−:Hy: L

2 provides a rotation around
the −y axis with half of the bending angle before and after
the kick. Of course, our approach is based on the local
Hamiltonian instead of the global geometry. It is trivial to
extend this to the case of vertical bends.

In addition to the second-order integrators, we can con-
struct even higher order integrators [15] based on sym-
metrically arranged second-order integrators. In particu-
lar, given a second-order integrator S2(L), such as the one
described by Eq. (9) or (14), one can construct the fourth-
order integrator (Ruth integrator)

S4(L) = S2(x1L)S2(x0L)S2(x1L), (15)

where x0 = −2
1
3 /(2 − 2

1
3 ), x1 = 1/(2 − 2

1
3 ). To make

more efficient integration, we can replace the fourth-order
integrator with the second-order one with a smaller number
of segments. In a typical circular accelerator, we find that
several segments of the second-order integrators are ade-
quate for dipole magnets however for quadrupole magnets,
one needs a few segments of the fourth-order ones.

LINEAR ANALYSIS

It is well known that the one-turn map at any given lo-
cation s in a circular accelerator can be described using the
Courant-Synder parameters: β(s), α(s), and γ(s) [11],

M =
(

cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
, (16)

where µ = 2πν is the entire phase advance in the ring and
ν is the betatron tune. The matrix M can be transformed
into a simple rotation with a canonical transformation,

M = A · R · A−1, (17)
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where A−1 is a canonical transformation that normalizes
the phase coordinates:

A−1 =




1√
β

0
α√
β

√
β


 , A =

( √
β 0
−α√
β

1√
β

)
, (18)

and R(µ) is a two-dimensional rotation matrix

R(µ) =
(

cosµ sinµ
− sinµ cosµ

)
. (19)

It is worth noting that the transformation A is unique only
up to a global phase ψ since the matrix

Ã = A ·R(ψ), (20)

could also normalize the phase coordinates. However, one
can easily show that the Courant-Synder parameters are ac-
tually independent of the arbitrary phase ψ. They can be
computed using the elements of matrix Ã

β = Ã2
11 + Ã2

12,

α = −(Ã11Ã21 + Ã12Ã22),
γ = Ã2

21 + Ã2
22. (21)

Although ψ is arbitrary and meaningless at any given loca-
tion s, the phase different δψ12 = ψ(s2) − ψ(s1) can be
identified as the betatron phase advance between two points
s1 and s2 if we relate the two transformations as follow:

Ã(s2) = A(s2) · R(δψ12) = M12 ·A(s1), (22)

where M12 is the linear transfer matrix between s1 and s2.
In fact, one can easily show that A(s2) and Ã(s2) con-
structed from Eq. (22) both normalize the phase coordi-
nates at position s2 using the fact that the betatron tune ν is
a global invariant in the ring. The Courant-Synder parame-
ters can be calculated using Eq. (21). In addition, the phase
advance is given by

δψ12 = arctan(Ã12/Ã11). (23)

R12

physical ring

normalized ring

M12

1

2

R12

A1
-1

A2

Figure 3: Illustration of the relationship between the phys-
ical and normalized rings.

The process of normalizing coordinates is shown in
Fig. 3. In the normalized ring, phase vector (x, px) rotates
according to the phase advance. Eq. (22) provides us a
simple way to propagate the lattice functions α, β, γ, and
ψ throughout a lattice. This technique has been extend to
the coupled lattice [16] and implemented in LEGO.

NONLINEAR ANALYSIS

There are many different ways to compute lattice func-
tions. Among them, the method outlined in the previous
section is the simplest one to extend to the case when non-
linearity is in presence. We start with a truncated Taylor
mapMn(z, δ) that is extracted from a lattice by tracking a
truncated power series of the order n [8]. For simplicity, we
assume that δ is the relative momentum and the RF cavities
have been turned off so that δ is a constant of the motion. It
has been shown [17] that one can construct perturbatively
order-by-order a nonlinear transformation A−1(J, ψ, δ) to
find high-order invariance,

Mn(J, ψ, δ) = A−1(J, ψ, δ)e−:Hn+1(J,δ):A(J , ψ, δ),
(24)

where J, ψ are the action-angle variables [10] and

A(J, ψ, δ) = e:Fn+1(J,ψ,δ):...e:F3(J,ψ,δ):A1(J, ψ)Aη(δ).
(25)
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Figure 4: Chromatic tune and beta as a function of relative
momentum δ computed by two different methods.

We have the well-known result: Hn(J, δ) = 2π(νxJx +
νyJy + ξxδJx + ξyδJy + ...), where ξx,y are the chomatic-
ities. Here, we would like to demonstrate that, from
A(J, ψ, δ), one can extract the closed dispersive orbit and
chromatic lattice functions as polynomials of δ. The for-
mula for the chromatic Courant-Synder parameters is iden-
tical to Eq. (22) except that all the matrix elements be-
come polynomials of δ. In particular, we have β(δ) =
Ã2

11(δ) + Ã2
12(δ).

We calculate the chromatic tune and beta at the interac-
tion point of the High Energy Ring in PEP-II using two
different methods. Using LEGO, in the first approach, for
a given δ, we numerically search the closed orbit, extract a
linear map relative to the closed orbit, and analyze the tune
and beta function according to the linear analysis outlined
in the previous section. In the second computation, we ex-
tract a 10th order Taylor map to make the normal form as
outlined in this section to compute the tune and beta func-
tion as a polynomial of δ using LIELIB [17]. For a given
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δ, we evaluate the polynomial at the end. The results of the
two calculations are identical and are shown in Fig. 4. Sim-
ilarly, the dispersive orbits obtained using the two different
methods agree accurately.

The agreement between the two methods demonstrates
one of the most important features of the symplectic-
integrator based codes. That is intrinsically inherited con-
sistency between the direct numerical calculation and the
nonlinear analysis based on a very high-order transfer map.
This feature gives us the confidence to use the map to iden-
tify the nonlinear abberations that might cause the stability
problem for the particles in circular accelerators.

Similar to the linear analysis, we can propagate the non-
linear A(J, ψ, δ) from s1 to s2 with

A(s2) = A(s1)M12, (26)

where M12 is the nonlinear transfer map between s1 and
s2. It is not hard to show that A(s2) also normalizes the
coordinates at position s2 because H(J, δ) is also a global
invariance. Once again, the chromatic lattice functions and
phase advance can be extracted fromA(s2).

CONCLUSION

In this paper, the codes based on canonical integrators
are discussed and studied in detail ranging from the under-
lining principles to practical analysis. The integrators out-
lined in the paper are most suitable to be applied to compact
and small circular accelerators where any approximations
have to be carefully examined and justified.

We introduce canonical integrators as a method of track-
ing charged particles in a static magnetic field. In the pro-
cess, we establish the TEAPOT algorithms as a second-
order integrator in the Hamiltonian system. As a result, we
make it applicable to accelerators that do not reside in the
horizontal plane.

We give a method that uniformly treats both the linear
and nonlinear analysis based on the normal form. Using
the truncated power series and normal form analysis, we
can compute the tune and beta function as polynomials of
the momentum deviation δ up to an arbitrary order. More-
over, the method is still applicable even when linear cou-
pling is present. This technique is a general extension to
HARMON [18] which is limited to the third order of δ.
This method could become extremely useful and necessary
when we design an even stronger final focusing system for
the next generation colliders.

There are many challenging works to be pursued.
Among them: what are most efficient and accurate inte-
grators for the fringe field in small machines? What deter-
mines the stability of particle in the circular accelerators?
How to determine the dynamic aperture without actually
tracking particles?
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