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Abstract

We study the linearized Vlasov equation for a bunched
beam subject to an arbitrary wake function. Following Oide
and Yokoya, the equation is reduced to an integral equation
expressed in angle-action coordinates of the distorted po-
tential well. Numerical solution of the equation as a formal
eigenvalue problem leads to difficulties, because of singu-
lar eigenmodes from the incoherent spectrum. We rephrase
the equation so that it becomes non-singular in the sense of
operator theory, and has only regular solutions for coherent
modes. We report on a code that finds thresholds of insta-
bility by detecting zeros of the determinant of the system
as they enter the upper-half frequency plane, upon increase
of current. Results are compared with a time-domain in-
tegration of the nonlinear Vlasov equation with a realistic
wake function for the SLC damping rings. There is close
agreement between the two calculations.

INTRODUCTION

We consider coherent instabilities in longitudinal motion
of a bunched beam in a storage ring. This problem is usu-
ally treated by the linearized Vlasov equation, although re-
cently a time-domain integration of the nonlinear Vlasov
equation has also been employed [1]. The linearized equa-
tion has been cast in various ways as an integral equation
expressing mode coupling. Oide and Yokoya [2] made an
important advance when they linearized the Vlasov equa-
tion about the proper equilibrium distribution determined
by Haı̈ssinski’s equation. They then transformed to action–
angle coordinates of the corresponding distorted potential
well, and took Fourier transforms in time and angle to de-
rive an integral equation. A discretization of their equa-
tion has been applied by several authors to find the current
threshold of a microwave instability [3, 4, 5, 6]. Some suc-
cess in agreement of thresholds with tracking studies has
been reported, but some difficulties have been noticed as
well, by the present authors and other investigators [3].

The Oide-Yokoya equation has the formal appearance
of an ordinary linear eigenvalue problem for the frequency
ω, and the procedure followed in [2] was to discretize the
equation in a straightforward way, then find the eigenval-
ues and eigenvectors numerically. This leads to difficulties
arising from the presence of the “incoherent spectrum” in
the spectrum of eigenvalues, that is, the continuously dis-
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tributed, real, amplitude-dependent frequencies of the un-
derlying single particle motion. In the discretization, the
number of eigenvalues is the dimension of the matrix, and
almost all of the eigenvalues are merely trying to imitate the
continuous incoherent spectrum, becoming more densely
distributed as the dimension of the matrix is increased. The
discrete eigenvalue of a coherent mode at the threshold of
instability approaches degeneracy with a value in the im-
itated continuous spectrum, making it difficult to separate
the desired discrete mode. Moreover, the procedure does
not have proper convergence as the dimension of the ma-
trix increases, since the eigenvectors of the exact problem
are generalized functions (of the form delta function plus
principal value), analogous to Case - van Kampen modes.
In principle, these cannot be represented numerically, al-
though in the numerical solution the eigenvectors indeed
look like vague imitations of the expected generalized func-
tion.

A way to avoid these difficulties was proposed in Ref.
[7], where it was shown that a simple change in the choice
of the unknown function eliminates consideration of the
continuous spectrum. Instead of a linear eigenvalue prob-
lem one has a nonlinear function of the frequency, the de-
terminant of the new integral equation, and zeros of this
function in the upper half plane correspond to unstable co-
herent modes. This formulation was derived through con-
siderations of functional analysis, by looking for an equa-
tion with compact operator. It could have been derived as
well by steps in analogy to coasting beam theory. The
coasting beam theory can also be formulated as a linear
eigenvalue problem, but the conventional and more suitable
formulation is in terms of a nonlinear function of frequency
(the dispersion function), quite analogous to our determi-
nant.

REGULARIZED INTEGRAL EQUATION

We follow the notation and formulation of Ref.[7]. The
angle-action coordinates for motion in the distorted poten-
tial well are (φ, J), and the frequency of that motion is
Ω(J). The Haı̈ssinski equilibrium distribution is f0(J).
The perturbation to the equilibrium is f1(φ, J, τ), with time
coordinate τ = ωst. A Fourier transform in φ and Laplace
transform in τ gives f̂1(m,J, ω), the variable conjugate to
τ being −iω with Im (ω) > 0. The unknown function to
be determined by our integral equation is

g(m,J, ω) = eJ/2(ω −mΩ(J))f̂1(m,J, ω) , (1)
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Figure 1: Wake function for the SLC Damping Ring and
Haı̈ssinski distribution for Ic = 0.048 pC/V.

whereas the unknown for Oide-Yokoya is f̂1. Our equation
has the following form derived in [7]:

g(m,J, ω)− ieJ/2f̌1(m,J, 0)

+
∞∑

m′=−∞

∫ ∞

0

dJ ′
H(m,J,m′, J ′)g(m′, J ′, ω)

ω −m′Ω(J ′)
= 0 ,

(2)

where f̌1 is the initial value of f1(m,J, τ). The kernel is
given in terms of the wake function W (q) and the canonical
transform q → Q(φ, J), where the normalized coordinate
q = z/σz is the distance to the synchronous particle over
the nominal bunch length, positive at the front of the bunch.
We have

H(m,J,m′, J ′) =

−Icf
′
0(J)e(J−J′)/2

2π

∫
dφ sin mφ

∫
dφ′ cos m′φ′

·Q1(φ, J)W (Q(φ, J)−Q(φ′, J ′)) , (3)

where Q1 = ∂Q/∂φ and Ic = e2N/(2πνsσE) is a normal-
ized current parameter. Here N is the bunch population, νs

the synchrotron tune, and σE the nominal energy spread.

APPLICATION OF THE METHOD

To discretize Eq.(2) we first change the integration vari-
able from J ′ to y = (J ′)1/2, then replace the integration
by a numerical quadrature rule on a uniform mesh {yi}.
By appropriate pole subtractions we take care to make the
quadrature rule valid for Im ω = v positive but arbitrarily
small. With NJ mesh points and a truncation of the mode
sum at m′ = Nm, the equation takes the form

[1 + A(ω)]g = h , (4)

where 1+A is a square matrix of dimension NJNm, and
g is a vector with components g(m,J(yi), ω). We report
calculations with NJ = 40, Nm = 12.

The matrix A(ω) is analytic for Im ω > 0, since it con-
sists of sums of products of discretized integrals that have
that property. If the determinant D(ω) = det[1 + A(ω)]
has a zero in the upper half plane at ω = ω̂, then the so-
lution g of (4) will have a pole at ω̂ for any initial value
term h. By the inverse Laplace transform the distribution
function f1(m,J, τ) then grows exponentially in time as
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Figure 2: Phase of determinant D(ω) vs. Re ω for fixed
Im ω.
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Figure 3: Absolute value of determinant D(ω) vs. Re ω for
fixed Im ω.

eIm ω̂τ . Since no instability is expected at low current,
there must be a critical current, or threshold, at which a
pole first appears in the upper half plane when the current
is increased from a small initial value.

A convenient way to detect zeros entering the upper
plane is based on the fact that the number of zeros in the
half plane Im ω > v is n = (1/2πi)

∫
Γ

dωD′(ω)/D(ω),
where the closed contour Γ consists of the line Im ω =
v plus the semi-circle at infinity. (We assume that no
zero is on the line Im ω = v). Now D′(ω)/D(ω) =
d log D(ω)/dω, and D(ω) = 1 + O(1/ω), D′(ω) =
O(1/ω2) at infinity. Consequently, 2πn is the total change
in the phase of D along the line Im ω = v.

We have applied this analysis to longitudinal motion in
the SLC Damping Ring, a case in which the wake function
is fairly well known, thanks to calculations of K. Bane. His
calculated wake is shown in the left picture of Fig. 1. The
nominal bunch length is σz = 5.58 cm. That figure also
reports the profile of the Haı̈ssinski distribution for current
parameter Ic = 0.048 corresponding to 1.71 × 1010 parti-
cles/bunch. The same value of current was used in the cal-
culations yielding the results shown in Fig 2 through 5. The
plot of the phase ϕ(Re ω + iv)/2π in Fig 2 suggests that
Ic = 0.048 is above threshold since the phase increases
by 2π around Re ω=2, indicating the presence of a pole
with Im ω̂ > 0.001. Consistently, in correspondence to
this value the plot of R(ω) = |D(ω)| shows a dip. While
other local minima are present in the plot for R(ω) only the
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one close to Re ω � 1 suggests the possible existence of
an additional pole. We used the location of these two local
minima to initialize Newton searches for the roots of D(ω).
The search starting from Re ω � 1 failed to converge
whereas the other yielded the root ω̂ = 1.860 + .00231i
- apparently the only root for the current under considera-
tion.

Next, we determined the mode associated to the pole at
ω̂, identified as the eigenvector of the matrix A(ω̂) corre-
sponding to eigenvalue −1. We evaluated the correspond-
ing perturbation to the bunch distribution f1(φ, J, ω̂) =∑

m f̂1(m,J, ω̂) exp(imφ) with the help of Eq. (1). The
resulting density plot is given in Fig. 4. The mode is largely
dominated by the m = 2 term but small contributions from
the m = 1 and m = 3 harmonics are also present. Not
surprisingly, the peak value of the distribution is located
at J = J∗ = 3.03 with Re ω̂ − 2Ω(J∗) = 0, where the
denominator |ω̂ − 2Ω(J)| is smallest.

We checked the results of this analysis against numeri-
cal solutions of the full Vlasov equation in the time domain
using the method of Ref.[1]. We tracked the relative r.m.s
energy spread σp starting from equilibrium. Since the nu-
merical equilibrium and Vlasov integration are not exact,
there is a growing envelope of σp indicating that the equi-
librium is unstable (thick band in Fig. 5). We fitted σp to
the form κ(τ) = A + B exp(τ Im ω̂) cos(τRe ω̂) to es-
timate oscillation frequency and growth rate. We found
ω̂ = 1.862 + .00229i, remarkably close to the result of
the linearized Vlasov analysis. Because beyond 100 syn-
chrotron periods some saturation of the instability appears
to take place we limited the fit to the numerical data from
the first 50 periods. A plot of the fitting function against
the Vlasov solver over a selected time interval is shown in
the inserted picture in Fig. 5.

Finally, we repeated the calculation by changing the cur-
rent. The values of current yielding an unstable frequency
ω̂ together with the resulting growth rates are reported in
Fig. 6. A linear extrapolation from the two values with
smallest rates gives Ith

c = 0.0432 as an estimate for the
current threshold.
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Figure 4: Density plot of f1(m,J, ω̂), the unstable mode
for Ic = 0.048 with frequency ω̂ = 1.860+ i2.311×10−3.
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Figure 5: Evolution of relative energy spread above current
threshold from Vlasov solver in the time domain. Inserted
picture: best fit to determine growth rate. One synchrotron
period corresponds to ∆τ = 2π.

0.04250.0450.04750.05 0.05250.0550.0575
Ic �V �pC�

0

0.002

0.004

0.006

I
m

Ω


Ic
th � 0.0432

Figure 6: Growth rate Im ω̂ of unstable mode as function
of current parameter Ic.
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