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MISMATCH OSCILLATIONS IN HIGH-CURRENT ACCELERATORS
O.A. Anderson, LBNL, Berkeley, CA 94720, USA

INTRODUCTION

In an important paper, Struckmeier and Reiser [1] studied
the oscillation frequencies of mismatched beams assum-
ing precise knowledge of the phase advances o, and o. In
the present paper we start instead with the quadrupole
focusing strength, beam line charge and emittance. With
these input quantities, the smooth approximation gives
substantial errors. Our simple modification improves the
accuracy by a factor of five at g, = 83°.

REVIEW: MATCHED-BEAM CASE

Previously, we analyzed the envelope equations for a
quadrupole-focused K-V beam by expanding the ripple in
a small parameter € (of the order of the focusing strength)
and using integrations [2]. Given the beam current,
emittance, and field strength, we found the envelopes a(z)
and b(z) and obtained (a), a,,,, and the phase advances o
and o, with explicit results for various truncations of the
expansion. The zeroth-order results corresponded to those
from the smooth approximation [3]. The first-order results,
involving the simplest correction terms, gave 3 to 10 times
improvement in accuracy, e.g., to ~1% at g, = 70°.

We treated a non-relativistic beam, easily generalized to
p of order unity. The beam was assumed uniform and
transported by linear quadrupoles having symmetric but
otherwise arbitrary profiles. The paraxial equations for the
envelopes a and b are:

e 2
a"=-K(z)a+—+ Q.
a a+b
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b"=+K(z)b+— + .
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As in [2], K(z) represents the alternating gradient and €
the emittance (we assume €, = €, ). Q is the normalized
perveance, defined non-relativistically by

0 = (dne,) (mi2g) " 1v",
with m the ion mass, I the beam current, gV the ion
energy, and ¢, the vacuum dielectric constant.

These envelope equations have matched solutions ay(z)
and by(z) with period 2L, the full length of a quadrupole
cell. Denoting averages over 2L by angle brackets, we
have (b,) = (a,) = A, with A the mean matched radius.

The matched solutions a, and b, can be expressed in
terms of A and small ripples p,(z) and p(2):

a,(2) = Al + p,(2)],
by = All + py()],

with pp(z) identical to p,(z) except for displacement by
length L. The leading-order ripple py(z) is

p,2) = JIK; (1
further terms are discussed in Ref. [2]. As before, [ and [[

refer to indefinite integrals of periodic functions with low-
er limits chosen to make average values over 2L vanish.

For symmetric cases, the inner integral starts at the mid-
point of a quadrupole and the outer integral at L/2.
Ref. [5] shows that, with only 0.04% error at g, = 120°,

a, + bo — 2A.
A is obtained from the matching equation [5]:

K = ;% +e4"  with ()
K. = Ky (1+c®), (2b)

2
Ky =(lJK1 ). (2c)
e’ =€’(1 +<p+%<1>2), (2d)

2
@ = 3([[[K]"). (2e)

The confining force K, is mean square of the integral of
the focusing force. The small factor ¢ is typically 0.08 [2].

PERTURBED-BEAM CASE

Consider small perturbations of the above matched
solutions a, and b,:

a@x)=a () +x@@), x<<(a;) )
b(2) =b,(2) +y(), y<<(b).

Putting Egs. (3) and (4) into the envelope equations and
linearizing,
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T\
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Expanding and retaining terms to order &, we get

, 12& 3 Y
s =—(K(z)—ATpO(z))d—?(l+10p0)s—;s, (7

4" = | k(p- 2 1 po(z))s— 3€ (141003 )2, ®
TAt ' A4 ’
where
s =x+Y, 9)
d=x-y (10)

are sum and difference functions corresponding roughly to
breathing and quadrupole excitations.

Since p, = —ffK and since A can be eliminated by
solving the matching equation (2a), Egs. (7) and (8)
depend only on our input quantities K(z), €, and Q.

SOLUTION OF PERTURBED EQUATIONS

Computer studies show that for ¢, and o less than about
80°, and for o, as large as 180° with o’s appropriately
chosen, the s or d modes can be separately excited, with
relatively small amplitude in the other mode. We use the
term “mode” in these nearly-decoupled, well-behaved,
stable cases. As seen in Fig. la, the excited mode can be
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fairly sinusoidal. Our goal here is to analyze the frequen-
cies of these quasi-sinusoidal oscillations.

In Eqgs. (7) and (8) the coefficients of the first terms on
the right generally have strong oscillations, while the
coefficients of the other terms are constant or have no
fundamental Fourier component. In order to solve Egs. (7)
and (8) we make the ansatz that the well-behaved modes
are driven mainly by the oscillations at the fundamental
period so that all harmonics may be neglected. For
example, we keep only the fundamental component of the
focusing term: K(z) — K, cos(mz/L).

We look for the frequency of the s mode by putting

s = cos(umz/L)

an

with u to be determined. We insert the above into Eq. (8),
integrate twice, then iterate. The final result is

ol = QL [2k;+2(€YA) 1+ &) (1-2)".  (12)
with o, = 2mu the sum mode phase advance. Similarly,
1 8 -
ol= (2L)2[Ke_[,(1+§<1>)+3 (EZ/A4)(1+§<I>)](1 —o)" (13)

Some results from Eqgs. (12) and (13)—with A from
Eq. (2)—are plotted in Fig. 2. It shows that Eqs. (12) and
(13) closely match the results obtained by numerical
integration. For the last points (at o, = 179°, o = 89°), we
obtain o, =225° and oy = 199° with accuracy of 1.5% and
—1.6%, respectively.

COMPARISON OF RESULTS

In Refs. [2] and [S] we showed higher-order expres-
sions for g, and o. By neglecting the @ corrections, those
equations become the smooth approximations

= QLK ,
4

smooth *

2
0
2

(14)

smooth ( 1 5)

with A, obtained from the standard matching equation,
which is our Eq. (2) with @ — 0:

Ke,ffz Q/A

Equation (2¢) defines K. Equation (14) appears in
Ref. [4] as (10.92) while Eq. (15) is Eq. (6) in Ref. [3]
(with different notations).

Dropping @ corrections in Egs. (12) and (13) and using
(14) and (15), we have

2 2 2

smooth

= 2L)’€?/A

e ¥ ETIAL

smooth *

(16)

: =20, +20 R (17)
S smooth smooth smooth
2 2 2
=g, +30 18
d smooth Osmooth smooth”’ ( )

in agreement with Ref. [1].

However, these results are in error for large o,—e.g.,
by 18 and 24%, respectively, at g,=199°. Our correction
terms improve the accuracy there by over a factor of ten.

Figure 4 in Ref. [1] shows curves stated to “represent
the smooth approximation results” with high accuracy for
0, < 90°. Actually, those curves were obtained from exact
numerical values of g, and o, not from smooth approx-

imations — which would be (14) and (15) in our notation.
Ref. [1] plots what we will call hybrid values:
2 2 2
S hybrid - zaoexact+ zaexacl’ (19)
2 _ 52 2
dhybrid_ Ocxact

(20)

exact

We use the term “hybrid” because these are not exact
formulas even though they employ exact numerical values
for o, and o. Egs. (19, 20) are useful if one already knows
those exact values, but when the input data is in the form
of quadrupole voltage, emittance, and current, the smooth
approximation would invoke the zero-order Eqs. (14-18).
Much better accuracy is obtained from our Egs. (12, 13).

The three alternatives are compared in Fig. 3 for
quadrupole strength giving an exact g, of 83.4°. Results
from the smooth-approximation formulas do not come
close to the exact results anywhere. Our formulas improve
the accuracy by a factor of five for the full range of o
obtained by adjusting current and emittance.

For o, > 90° there is an unstable region, such as that
shown in Fig. 4. For an exact o, of 112.2° eigenvalue
analysis [1] predicts instability for 44.5°<0<86.3°.
Beyond this unstable zone there are regions where the
mismatch oscillations are well behaved (Fig. 1a), satisfy-
ing our model, and regions where the opposite is the case
(Fig. 1b). Fig. 4a shows that for o around 89°, where the
regular decoupled oscillations satisfy our ansatz, our for-
mulas give very good accuracy for o, and 0. In the case
of o =109°, with poorly behaved oscillations, the results
are less accurate but still a major improvement over the
smooth approximation (Fig. 4b). The hybrid formula, of
course, approaches perfection at the far right of Fig. 4c,
where o — g, since the exact g, is given in advance.

For extreme quadrupole strengths producing large o,
such as the 179° case mentioned above, the narrow
regions where oscillations are decoupled and regular may
be of limited practical interest, but the accuracy of our
formulas there seems to vindicate our ansatz. For g, < 80°
or so, our model is good for any combination of current
and emittance so that equations (12) and (13) could be
useful in practical applications.
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Figure 1: Envelope perturbations: (x+y) and (x—y) vs. z for initial
perturbations x(0)=y(0) = 10-5 cm, x'(0)=y'(0)=0. Voltage of
25 kV gives 0, =112.2°. (a) Current and emittance are adjusted
to give 0 = 89°; sum and difference modes are well decoupled
(dotted line has tiny amplitude); therefore Eqs. (12) and (13) are
accurate, as confirmed in Fig. 3. (b) Current is decreased to
give 0= 109°; strong coupling between modes violates our
model. Fig. 4 shows decreased accuracy.
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Figure 2: Even-mode phase advances O for various 0, and O.

Voltage range 5-30 kV. (Odd-mode results—not shown
here—are similar.) Abscissa values obtained by counting
mismatch oscillations for well-behaved cases (cf. Fig. la).
Smooth-approximation (17) errors approach 18%, but values
from Eq. (12) lie close to the straight line representing zero
error. For each 0, up to about 80°, Eq. (12) was applied over a
wide range of current and emittance and therefore of O.
However, for larger 0, some O’s gave ill-behaved fluctuations
(cf. Fig. 1b), preventing measurement of O_ as well as
invalidating our model. Only measurable cases are shown.
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Figure 3: 0 and 0y vs. O for g, = 83.4° Solid curves are from
numerical integrations and eigenvalue analyis, as in Ref. [1].
(a) Egs. (12) and (13) are good to 2% for all 0. (b) Smooth
approximation Egs. (17), (18) are off by about 10%. (c) Hybrid
formulae (19, 20) require input of exact values of o'and g [1].
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Figure 4: Same as Fig. 3 except 0, =112.2°. Eigenvalue analysis
(Ref. [1]) and Egs. (12), (13) are inaccurate for 0 < 0<~86.3°,
where s and d oscillations are strongly coupled. (a) Egs. (12, 13)
are good near 89°, with oscillations nearly sinusoidal. (b) Smooth
approximation shows poor accuracy everywhere. (c) Hybrid
formula, using exact 0'and 0, is automatically exact for 0= 0y,
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