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Abstract

Self–consistent dynamics of a bunch circulating in the
Compton storage ring has been studied analytically. Dis-
turbances from both the synchrotron and Compton radia-
tions were taken into account. The emittances in laser–
dominated rings (where the synchrotron energy losses are
much smaller then the Compton ones) were evaluated. The
resultant emittances (synchrotrons plus Comptons) were
compared with the synchrotrons. As were shown, the lon-
gitudinal degree of freedom is heated up due to Compton
scattering. Almost the same conclusion is valid for the ver-
tical uncoupled betatron emittance. Since it is impossible
in principle to get zero dispersion in the banding magnets,
the radial emittance almost always cooling down by laser.
Therefore in practical cases of coupled transverse oscilla-
tions with the horizontal emittance determining the vertical
one, the laser will cool down the transverse degrees of free-
dom.

INTRODUCTION

Efficiency of Compton storage rings — number of emit-
ted X–ray quanta per circulating electron per second — ex-
hibit strong dependence upon the electron bunch dimen-
sions: smaller the bunch sizes larger the yield, main figure
of merit.

In this report we are going to derive minimal beam sizes
as functions on the ring and laser parameters. Another goal
is to reveal the problem whether interactions of electrons
with the laser splash lead to heating or cooling of the bunch.

We will make use the term cooling in the sense of de-
crease of the emittances. We will use emittance in the
meaning of RMS phase space emittance εrms:

εrms ≡
√
〈x2〉 〈p2

x〉 − 〈xpx〉2 , (1)

where (x, px) are the conjugated coordinate and momen-
tum.

STATIONARY EMITTANCES

In the first approximation, the particle motion in a bunch
can be suggested as 3–dim oscillator with uncoupled de-
grees of freedom. The motion of oscillator without damp-
ing and excitation is governed by an equation:

ẍ− U ′
x(x) = 0 , (2)

where U(x) is the potential function (potential well).
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The potential function of the harmonic oscillator (ap-
proximation for the transverse oscillations) is U(x) =
Q2x2/2, for the mathematical pendulum (synchrotron os-
cillations) U(x) = cosQx. Further we will restrict
our study to harmonic oscillators as small amplitude syn-
chrotron oscillations reduce to harmonic ones.

Conservative Hamilton system (ensemble of oscillators)
holds occupied by particles phase volume conservative.
Thus, initial emittance preserved in time (saying nothing of
its magnitude). To get the equilibrium specific emittance,
the system should open to externals: become nonconserva-
tive.

Perturbations of the conservative system in general can
be decomposed into (a) perturbation of the potential func-
tion, (b) excitation, and (c) damping. The equilibrium state
of the system (distribution in phase space) is settled due to
balance of excitation and damping.

Perturbed canonical equations have a form

ẋ = p ;
ṗ = −U ′

x(x) + F (p, t) . (3)

Here F (p, t) is a random function describing perturba-
tion from interactions of electrons with the laser splash.

The random function F (p, t) contains a stochastic com-
ponent F (p, t)− 〈F (p, t)〉 and a regular one 〈F (p, t)〉. By
expanding 〈F (p, t)〉 into power series of p around p = 0,
the equations (3) can be deduced to that corresponding to
Kramers equation describing motion of the damped nonlin-
ear oscillator excited by white noise:

ẍ + αẋ + U ′
x(x) =

√
Sξ(t) ,

where ξ(t) is the unity white noise; α the friction factor.
The stationary density in the phase space can be written

in the form:

ρst(ε) = N exp
(
− ε

εrms

)
,

with εrms being the root mean square emittance,

εrms =
S

2Qα
.

Hence, the stationary emittance is proportional to exci-
tation power and inversely — to the damping term.

In the electron storage rings, both the excitation and
damping are caused by acting of short impulses (with typi-
cal duration less than 10−10 s. Therefore, as it follows from
the Campbell theorem, the excitation and damping terms
can read as:

α =
∑

i

νiα
′
i ; S =

∑
i

νiS
′
i ,
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where primed are statistical properties of single impulse of
i species; νi the frequencies of impulses.

Two important consequences follow from it. First: if
both the excitation and damping are caused by the same and
only process then the partial emittance εi is independent on
the frequency:

εi =
Si

2Qαi
=

νiS
′
i

2Qνiα′i
=

S′i
2Qα′i

Second: the total emittance of a system undergo several
processes, can be decomposed into a weighted sum of par-
tial emittances:

εrms =
∑

i νiSi

2Q
∑

i νiαi
=

∑
εiνiα

′
i∑

νiα′i
. (4)

This expression is a basis in learning if the Compton in-
teractions result in cooling or heating. Let us decompose
resultant emittance (4) into two partial ones: the “syn-
chrotron” which is the emittance of bunch with the laser
switched off, and the “laser” partial emittance. Actually,
the synchrotron emittance is settled due to balance of sum
excitations and damping (the only source of damping with
the laser off is the synchrotron radiation emission, that is
why we refer to it as “synchrotron”).

From (4), it follows that if the synchrotron emittance is
smaller than the laser εlas > εsynch then heating will take
place with laser on, and on the contrary: if ε las < εsynch

then cooling.

PARTIAL LASER EMITTANCES

In our estimations we will apply the Thomson cross sec-
tion for Compton scattering: in the Compton X–ray source
there are good margins (by several orders of magnitude)
both in energy of laser photons and their density within
which application of the Thomson cross section is valid.

Indeed, Thomson cross section is valid for the laser
wavelength in the electron rest frame exceeding the elec-
tron Compton wavelength. It is equivalent to the energy of
electrons: γ < E0/4Elas (E0 ≡ mec

2 ≈ 0.511 eV is the
electron rest energy).

The limiting density of laser photons for the Thomson
formula is equivalent to unity magnitude of the deflection
factor (undulator parameter): the limiting density of pho-
tons results in scattering by the bunch electron of about one
photon per laser wavelength.

Statistical parameters of the electron recoil due to a
Compton interaction are:

〈Ex〉 = 2Cϕγ2Elas ; (5)
〈
E2

x

〉
=

16
3

C2
ϕγ4E2

las ; (6)
〈
(Ex − 〈Ex〉)2

〉
=

4
3
C2

ϕγ4E2
las ; (7)

〈
E2

x⊥
〉

=
8
3
C2

ϕγ2E2
las . (8)

Here Cϕ ≡ (1 + cosϕ)/ 2, ϕ is the crossing angle.

Longitudinal Emittance

Applying the described above procedure and the recoil
momentum (5) and the mean squared deviation (6) or (7),
we get the partial relative energy spread caused by the laser
interactions (see [1]):

σ2
E =

σ2
γ

γ2
= κ

γCϕElas

E0
, (9)

where κ = 1/6 if the centered noise (7) employed, or κ =
2/3 if the total deviation (6) used.

Transverse Emittances

Making use the same approach and applying a so called
smooth or (η, ψ) presentation the equation of betatron os-
cillations cast into a form of harmonical oscillator (see [2]):

d2η

dψ2
+ Q2η = 0 ; (10)

η ≡ y√
β

, ψ ≡
∫

s

ds

Qβ
.

Here y = {x, z} is the transverse deflection of a particle
from the equilibrium orbit, Q the betatron number (number
of betatron oscillations per turn), β = β(s) the betatron
(amplitude) function, s longitudinal coordinate playing the
role of time.

Substituting into this expression the mean and mean
squared energy losses with account for division of the en-
ergy into two transverse degrees of freedom, we finally get
an expression describing the transverse bunch dimensions
at the interaction point:

σ2
y =

β2
yElas

3γE0
. (11)

As it can be seen from the derived expression, the trans-
verse dimension of the bunch in the interaction point is pro-
portional to value of the betatron function in this point and
square root of ratio of the laser photon energy to the elec-
tron energy.

SIMULATION OF LONGITUDINAL
DYNAMICS

The presented above analytical estimations concerning
partial laser energy spread in the electron bunches were de-
rived under assumption that:

• Damping of the synchrotron oscillations is regular,
caused by viscous friction;

• Excitation is caused by a white noise with zero aver-
age value;

• Each electron is subjected to large number of exciting
interactions per a period of synchrotron oscillations.

Strictly speaking, these assumptions are not true for the
synchrotron dynamics in the Compton storage ring. To val-
idate the analytical results, a Monte Carlo simulation of the
synchrotron dynamics were performed.
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Figure 1: Temporary behavior of energy spread. Number
of particles 105, probability of interaction per rev 0.1

The relative energy deviation of circulating electron p is
changing due to Compton energy loss per the revolution
where the interaction takes place:

pf = pi [1− bζ(2 + pi)]− bζ ,

with b = 2(1 + cosϕ)γsElas/E0, ζ is a (random) ratio of
energy loss to its maximal value.

The dynamics of a bunch consisting of 2 × 103 . . . 105

macroparticles with zero initial phase and energy deviation
were carried out. The number of interactions per revolution
was varied from 2 to 10−4.

The results of simulation are as follows. The damp-
ing time (duration of transition to steady state) is equal to
that predicted by Robinson–Kolomensky–Lebedev theory
of synchrotron damping [3] with accuracy better than 2 %,
see Fig.1

Concerning the stationary energy spread in the electron
bunch (which factor κ – 1/6 or 2/3 – in (9) is valid), the
simulation show that the energy spread is determined by
the number of interactions per revolution, Fig.2. It reveals
no response upon the period of synchrotron oscillations.

COOLING OR HEATING?

As longitudinal emittance is proportional to laser’s pho-
ton energy then the synchrotron partial emittance is always
much smaller then the laser one: longitudinal degree of
freedom is heated up due to Compton scattering.

Almost the same conclusion is valid for the vertical un-
coupled betatron emittance. Besides the energy of laser
photons which is much larger than the equivalent “syn-
chrotron photons” there squared beta function magnitude
in the numerator. In principle it is possible to provide this
magnitude say hundred times smaller that in bending mag-
nets where synchrotron radiation emitted. In this particular
case the cooling would be attained.

κ

Figure 2: Dependence of κ on number of interactions per
revolution.

There two exciting mechanisms in the radial (horizontal)
betatron oscillations. One is the same as for the vertical
ones: random declining angle between the emission direc-
tion and electron’s trajectory. The second mechanism much
severe than fist: emission of the synchrotron quantum in
dispersive section results in a skip of the equilibrium orbit.
Since it is impossible in principle to get zero dispersion in
the banding magnets where the synchrotron light emitting
and keeping in mind larger magnitude of the beta function
in there as compared with the low–beta dispersion–free in-
teraction point, we come to conclusion: the radial emit-
tance almost always cooling down by laser.

Therefore in practical cases of coupled transverse oscil-
lations with the horizontal emittance determining the ver-
tical one, the transverse degrees of freedom will be cooled
down by the laser.

The stationary energy spread in bunches circulating in
the Compton storage ring is dependent on the number of
interactions per bunch revolution: with decrease in this
number, the partial energy spread increase (twofold for the
synchrotron dominated rings as compared with laser dom-
inated ones).
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