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Abstract

Mathematical optimization methods are widely used in
designing and construction of charged particles
accelerators. In this paper new approach to beam
dynamics optimization is considered. Suggested approach
to the problem is based on the analytical representation
for variation of examined functionals via solutions of
special partial differentional equations. The problem of
optimization is considered as a problem of mutua
optimization chosen synchronous particle motion and
charged particles beam in whole. This approach was
applied to the beam dynamics optimization for RFQ
structure.

PROBLEM STATEMENT

Let us consider the following mathematical model of
control described by a system of differential equations

[1]:

dx
i f(t,x,u), )
dy
E—F(I,X,y,u), (2)
with initial conditions
X(0) = %, €)
y(0) = Yo € My, @
Here teT,=[0,T] — is independent variable,
xe R" and ye R" — vectors of phase variables,

u=u(t) — r-dimensiona function, T — is fixed
number. Set M, , ={Y, 1Y, = Yt X(1), Yo, 1), Yo € Mg}
is a crosssection of beam of traectories
y(t, X(t), ¥,,U), Yo € M, a amoment t under fixed
control U =U(t) and according program motion X(t) .
In other words, M, is a shift of set M, along

trajectories of system (2). Theset M,  R™ is compact,
with nonzero measure; N-dimensiona vector-function
f(t,x,u) is supposed to be continuous with its partial
derivatives of the first order, M -dimensional vector-
function F(t,X,Y,U) is supposed to be continuous
together with partial derivatives of second order inclusive.

We assume that admissible controls U = u(t) , te T,

form some class D of piecewise continuous function
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with values fromacompactset U € R', R", R™, R’
are N, M and I -dimensional Euclidean spaces.

Let us agree that subsystem (1) describes dynamics of
program motion, and subsystem (2) describes dynamics
of motions disturbed with respect to initial conditions. In
particular, subsystem (2) can be considered as eguations
in deviations from program motions.

Solution of system (1),(2) with initial conditions (3),(4)
and fixed control function U= u(t) will be a trajectory

X(t) = X(t, %5, U)

Y, Yo) = Y(t, X(1), Yo, U) , Yo € My turning
equations (1),(2) into identity. Let us note that solution of
subsystem (1) can be considered independently of
subsystem (2).

Let usintroduce the following functionals:

1 (u) = ¢, [, (t, X(), u®))dt +,9,((T)) . (5)

and a beam of trgectories

LW =¢ [ o (t,x(1), y,,u®)dy,dt +
0 M, ) (6)
+¢, [ (yr)dy;

MT,u
Here ¢,,9,,0,,0, ae nonnegative, continuously
differentiable functions, C,;,C,,C;,C, — nonnegative

constants. Functional (5) characterizes program motion
dynamics, and functional (6) estimates behavior of beam
trgjectories.

Let usintroduce the following functional:

|(U)=|1(U)+|2(U), (7)
simultaneously estimating dynamics of program motion
and particles beam dynamics.

VARIATIONS OF FUNCTIONALS
Consider specia partial differential equations

avl+%f(t,x,u)+cl(pl(t,x,u):o ®

Jt

av, ov v,

24+ —2f(t, xU)+—=F(t X y,u)+

o oy (XY 3y t.xy,u) o

+y,divFE,x y,u)+cp t,x y,u)=0
with terminal conditions
Vi(T,X) =¢,9,(x).
V,(T,X,y) =C,0,(XY).

Here
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vi=vi(t,X),
v,=Vv,([t,XY).
Introduce the following functions:

W (t, x,u) = aa? + %Vl
X

f(t,xu)+ce(t,xu),

av, ov
t1 ) == 2 f t)
w(t,x YU % Tox (t,xu)+

%F(t,xy,u)+v2divF(tXy'“)+%<”z(t’>‘y’“)'

Evidently
wi(t, X, u(t)) =0,
w, (t, X, y,u(t)) =0.

Hence we obtain new representation for functionals
(5),(6), namely,

1, (u) =v1(0, %),

I,(u)= jVZ(O, X1 ¥o)dYo -
Mo
Let
0 =u+Au, %) =x(t,%, ), 7t) = Y.y, 0.

Then we obtain

Alu,Au) =1 (@) -1 (U) = ijq(t, X(t),G()dt+

+ ] Jw (6.0, 50).00)Fdt

Using the results of the works [2-4], the increment of
functional (7) can be presented in the following form:

Al =6 | +0o(u),
S1=61,+651,
where

Sl = Tjwl(t, x(t), T (t))dt ,

T

Sl = j Iwz(t,x(t), y,, G (t))dydt ,

0 My,

o(u)/1—0as pt—0,
u=max (1A, f Il +1AF I+ 11A,dv,F L),

A, f =T, x,u+Au)-f(t,xu),
AF=F(,x,y,u+Au)-F(t,x y,u),
A div F =div A F,

lel.= [lo)|dt.

Present variation Ol » inthefollowing form:

T aVz
5l (J'M{{aXAUH

(10)
+%V2 AUF+v2di\y/AuF+gAu(p2}dytdt.
y
Introduce new functions

qtxyu=

¥

OV XY Y508 YY)
— 2 1 i-1 i i+ n . f t,)(’u ]

Let there exists function @, that
¢2(ta X, y’ U) = diqu)Z(t’ X, y,U) !
then variation (10) may be represented as
T
a,= f Idivy(Auq+v2AuF +C,A @, )dy dt
0 M,
or

i
3,= [ [laa+v.AF+ca®,in(y)ds, dt.an

0S,
Hee S, is the boundary of M, , and
b4
n(y,) = _Ply) isan external unity normal.
I (y) |l

Vector-function ¥ satisfies the equation

d¥(y(t) _ [ 9F(t,x(t), y(t),u(t))
p ——[ 3y J Y(y(1)
withinitial condition

W(y,) =¥ (y(0)) =0B,(Y,)/9Y, .
where B, (X) =0 isthe equation of M boundary..

Let there exists vector-function G, that
div,G(x,y) = g,(xY),
then we obtain new representation for functional |, :
T

L=c [ [@,(txy,u)n(y)ds,d +
0 S[U

¢, [G,(x,yr)n(y,)ds,,.
St
So the set control problem is reduced to the boundary
set control problem for functional under consideration.

OPTIMIZATION OF LONGITUDINAL
MOTION IN RFQ

The developed agorithm was applied to optimization
of longitudinal motion of beam particlesin RFQ structure.
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The longitudinal motion of beam particles in RFQ
accelerator is described by the following system of
differential equations[5,6]:

i~(L/L0)2 =2k-7(7)-cose,(T),

(12
. (UL o)
[ TS A (WIT RN
- ud )) (cosp, —cosly +,)) =0
Here 7 =Q,7, ngw, T=Ct —
W, L2

is the reduced time, € — is the charge of electron, U,
— is the electrode voltage, ©® — is the efficiency of
acceleration parameter, W, — is the self-energy of

accelerated particle, L = S, A — isthe length of period,
B.— is the reduced velocity of synchronous particle, A
— is the wave-length of accelerating field, C — is the
light velocity, k=Q, /@, & =2rw/c, @ — is the
frequency of accelerating filed, w(7 )= 27 (z,— z)/ L

— is the deviation of longitudina coordinate of each
beam’s particle from the longitudinal coordinate of the
synchronous particle.

So equations (12),(13) determine synchronous particle
dynamics and the motion of beam particles in whole,

respectively. The control functions 77(7) and ¢ (7) are

the acceleration efficiency and the phase of synchronous
particle — the piecewise linear functions on integration

timeinterval [O, T] :
Introduce functionals

() = ¢, [@ (A *)dT +,(X(T) %), (14)

LW =c, [?+y?)dydy, o)

MT u
where A, is the defocusing factor, calculated by the
formulae

A = 2k2 |Sm(0s |/(L/Lo)

and value X(T)=(L/Ly)%}=(B./5,)2 . where
X is a fixed parameter, setting the synchronous particle
velocity at the output of accelerator; ¢ is a penadty
function that could be defined differently.

The approach of optimization described above was used
for RFQ structure designing. The following functional
was considered:

H(u) =1, (u)+1,(u),

were |,(u) and |,(u) are determined by (14),(15). On
the basis of variation (11) the methods of longitudinal
motion optimization were constructed. For dynamics
calculation and optimization the Matlab v.6.5 codes were
used. The redlization of developed methods shows their
effectiveness.

The following table represents some of the accelerating
structure parameters:

Some parameters of obtained RFQ structure.

Type of particles Protons
Input Energy 95 KeV
Output Energy 5MeV
Freguency 352 MHz
Electrode Voltage 100 KV
Structure's Length 5,5 meter
Final Synchronous Particle Phase -24.39 radian
CONCLUSION

The paper suggests new approach alowing joint
optimization of program motion and an ensemble of
perturbed motions.
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