
ON BEAM DYNAMICS OPTIMIZATION* 

D.A. Ovsyannikov, S.V. Merkuryev, St. Petersburg State University, Bibliotechnaya pl.2, Petergof, 
St. Petersburg, 198504, Russia

Abstract 
Mathematical optimization methods are widely used in 

designing and construction of charged particles 
accelerators. In this paper new approach to beam 
dynamics optimization is considered. Suggested approach 
to the problem is based on the analytical representation 
for variation of examined functionals via solutions of 
special partial differentional equations. The problem of 
optimization is considered as a problem of mutual 
optimization chosen synchronous particle motion and 
charged particles beam in whole. This approach was 
applied to the beam dynamics optimization for RFQ 
structure. 

PROBLEM STATEMENT 
Let us consider the following mathematical model of 

control described by a system of differential equations 
[1]: 
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Here ],0[0 TTt =∈  — is independent variable, 
nRx ∈  and mRy ∈  — vectors of phase variables, 

)(tuu =  — r -dimensional function, T  — is fixed 

number. Set }),,),(,(|{ 000, MyuytxtyyyM ttut ∈==  

is a cross-section of beam of trajectories 

),),(,( 0 uytxty , 00 My ∈  at a moment t  under fixed 

control )(tuu =  and according program motion )(tx . 

In other words, utM ,  is a shift of set 0M  along 

trajectories of system (2). The set mRM ⊂0  is compact, 

with nonzero measure; n -dimensional vector-function 

),,( uxtf  is supposed to be continuous with its partial 

derivatives of the first order, m -dimensional vector-

function ),,,( uyxtF  is supposed to be continuous 

together with partial derivatives of second order inclusive. 

We assume that admissible controls )(tuu = , 0Tt ∈ , 

form some class D  of piecewise continuous function 

with values from a compact set rRU ∈ , nR , mR , rR  
are n , m  and r -dimensional Euclidean spaces. 

Let us agree that subsystem (1) describes dynamics of 
program motion, and subsystem (2) describes dynamics 
of motions disturbed with respect to initial conditions. In 
particular, subsystem (2) can be considered as equations 
in deviations from program motions. 

Solution of system (1),(2) with initial conditions (3),(4) 
and fixed control function )(tuu =  will be a trajectory 

),,()( 0 uxtxtx =  and a beam of trajectories 

),),(,(),( 00 uytxtyyty = , 00 My ∈  turning 

equations (1),(2) into identity. Let us note that solution of 
subsystem (1) can be considered independently of 
subsystem (2). 

Let us introduce the following functionals: 
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Here 2121 ,,, ggϕϕ  are nonnegative, continuously 

differentiable functions, 4321 ,,, cccc  — nonnegative 

constants. Functional (5) characterizes program motion 
dynamics, and functional (6) estimates behavior of beam 
trajectories. 

Let us introduce the following functional: 

 )()()( 21 uIuIuI += , (7) 

simultaneously estimating dynamics of program motion 
and particles beam dynamics. 

VARIATIONS OF FUNCTIONALS 
Consider special partial differential equations 
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with terminal conditions 
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Here 
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Introduce the following functions: 
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Evidently 

0))(,,(1 ≡tuxtw , 

0))(,,,(2 ≡tuyxtw . 

Hence we obtain new representation for functionals 
(5),(6), namely, 
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Using the results of the works [2-4], the increment of 
functional (7) can be presented in the following form: 
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Present variation 2Iδ  in the following form: 
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Introduce new functions 
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Let there exists function 2Φ  that 
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then variation (10) may be represented as 
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Here utS ,  is the boundary of utM ,  and 
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Vector-function Ψ  satisfies the equation 
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with initial condition 
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where 0)(
0

=xB  is the equation of 
0

M  boundary.. 

Let there exists vector-function 2G that 
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then we obtain new representation for functional 2I : 
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So the set control problem is reduced to the boundary 
set control problem for functional under consideration. 

OPTIMIZATION OF LONGITUDINAL 
MOTION IN RFQ 

The developed algorithm was applied to optimization 
of longitudinal motion of beam particles in RFQ structure. 
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The longitudinal motion of beam particles in RFQ 
accelerator is described by the following system of 
differential equations [5,6]: 
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is the reduced time, e  — is the charge of electron, LU  

— is the electrode voltage, Θ  — is the efficiency of 

acceleration parameter, 0W  — is the self-energy of 

accelerated particle, λβsL =  — is the length of period, 

sβ — is the reduced velocity of synchronous particle, λ  

— is the wave-length of accelerating field, c  — is the 

light velocity, ω~0Ω=k , cπωω 2~ = , ω  — is the 

frequency of accelerating filed, ( ) ( ) Lzzs /2~ −= πτψ  

— is the deviation of longitudinal coordinate of each 
beam’s particle from the longitudinal coordinate of the 
synchronous particle. 

So equations (12),(13) determine synchronous particle 
dynamics and the motion of beam particles in whole, 

respectively. The control functions ( )τη ~  and ( )τϕ ~
s  are 

the acceleration efficiency and the phase of synchronous 
particle — the piecewise linear functions on integration 

time interval [ ]T,0 . 

Introduce functionals 
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where defA  is the defocusing factor, calculated by the 

formulae  
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0

2
0 ββ== , where 

x  is a fixed parameter, setting the synchronous particle 

velocity at the output of accelerator; ϕ)  is a penalty 

function that could be defined differently. 

The approach of optimization described above was used 
for RFQ structure designing. The following functional 
was considered: 

)()()( 21 uIuIuI += , 

were )(1 uI  and )(2 uI  are determined by (14),(15). On 

the basis of variation (11) the methods of longitudinal 
motion optimization were constructed. For dynamics 
calculation and optimization the Matlab v.6.5 codes were 
used. The realization of developed methods shows their 
effectiveness. 

The following table represents some of the accelerating 
structure parameters: 

Some parameters of obtained RFQ structure. 

Type of particles Protons 

Input Energy 95 KeV 

Output Energy 5 MeV 

Frequency 352 MHz 

Electrode Voltage 100 KV 

Structure’s Length 5,5 meter 

Final Synchronous Particle Phase -24.39 radian 

CONCLUSION 
The paper suggests new approach allowing joint 

optimization of program motion and an ensemble of 
perturbed motions. 
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