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Abstract 
The beam distribution of particles in a storage ring can 

be distorted in the presence of nonlinear resonances. 
Computer simulation is used to study the equilibrium 
distribution of an electron beam in the presence of a 
single 4th order nonlinear resonance in a storage ring. Its 
result is compared with that obtained using an analytical 
approach by solving the Fokker-Planck equation to first 
order in the resonance strength. The effect of resonance 
on quantum lifetime of electron beam is also compared 
and investigated. 

INTRODUCTION 
As a particle moves in a storage ring, its orbit depends 

sensitively on its betatron tune. If the betatron tune is near 
a resonance condition, nνx + lνy = m, where m, n, l are 
integers, particles in the accelerator can encounter 
coherent kicks. Thus, its orbit will be perturbed and the 
beam distribution in phase space will be distorted from a 
simple ellipse. The degree of distortion depends on how 
close the resonance is and also the strength of resonance. 

In 1-dimensional case, near the resonance nν  = m, the 
Hamiltonian of the particle can be generally expressed as  

 
(1) 

 
where (φ,J) are the phase space angle and action variables, 
Dν(J) is the detuning function, and f1(φ,J) is some 
resonance structure function. In an electron storage ring, 
synchrotron radiation complicates the particle motion 
because it introduces radiation damping and quantum 
diffusion to the electron motion. To obtain the equilibrium 
beam distribution, these effects must be taken into 
account. In the absence of resonance, the equilibrium 
distribution is Gaussian in x and px. This distribution can 
be expressed with action-angle variables (φ,J) as 
exponential in J, i.e. ψ(φ,J) = e-J/Jo, where Jo is the normal 
beam emittance determined by a balance between the 
radiation damping and quantum diffusion.  

Recently, Fokker-Planck equation near a single 
resonance for an electron beam in a storage ring was 
solved to first order in resonance strength [1]. This gives 
an equilibrium beam distribution as 

 
 
                       (2) 
 
 

When the perturbation is given by a magnetic multipole, 
Dν(J) and f1(φ,J) can be expressed as 
 

 
if n = even,    (3) 

 
     Dν(J)=0                                         if n = odd.  

 
and 

 
                              (4) 

 
where Bρ is the magnetic rigidity, and l is the length of 
the multipole. 

The quantum life time of the electron beam is also 
obtained in this calculation. It was shown that in the 
presence of a nearby nonlinear resonance, compared with 
the case away from resonance, the quantum lifetime of an 
electron beam is shortened by a factor of  

  
   
               (5) 
 
 

In this paper, a computer simulation is carried out in the 
proximity of 4th order nonlinear resonance to examine this 
theoretical model. 

COMPUTER SIMULATION 
In order to perform a computer simulation, the equation 

of motion including all of the relevant effects must be 
developed first. In our approach, the thin lens 
approximation is used, while collective effects due to the 
beam-generated electromagnetic fields are neglected. At 
any one point of the storage ring the beam transfer matrix 
for the transverse phase space coordinates between the 
nth turn and its previous turn are related by  
                           

                                  (6) 
 

 
 
 
 
 

where ν is the betatron tune, β is the betatron amplitude, 
α = -β’/2. In our simulation, the effects from the radiation 
damping and quantum diffusion caused by synchrotron 
radiation, are represented by a damping kick 

∆x’ = -δ x’, where δ = 2To/τ 
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and a quantum excitation kick,  
∆x’ = q R ,  

where   

 
and R is a random number uniformly distributed 
between –1 and 1; σxo is the initial beam size in the x 
direction, To is the revolution period of the electron beam 
around the ring, and τ is the betatron radiation damping 
time. For studying the effects in the presence of a 
nonlinear resonance, a nonlinear kick ∆x’=kxn-1 is also 
added in the simulation, where k represents the kicking 
strength.  

For the simulation in this study, we have assumed 
the perturbation is given by a 4th order magnet multipole 
error at a location s=0. As the electron circulates around 
the ring this multipole error gives δ-function kicks to the 
electrons once each turn. A random-generated beam with 
bi-Gaussian distribution in x and px and beam size of σ = 
400 µm is used as the initial beam distribution. The 
radiation damping time is set to be 10 ms. The electrons 
are simulated for tens of thousands revolution turns until 
they reach the equilibrium state, which is assumed when 
the rms of the beam size becomes statistically unchanged 
turn by turn. In this study 50,000 particles and typically 
more than 300,000 turns were used for various kicking 
strengths.  

RESULT AND DISCUSSION 

Equilibrium distribution near a 4th order 
nonlinear resonance 

A comparison between the solved Fokker-Planck 
equation under the smooth approximation for an electron 
beam near a single 4th order nonlinear resonance and the 
simulation result is discussed here. In Fig. 1, the phase 
space distribution in px and x when k=1000/m3 is shown. 
In the plot the lines showing the separatrix and the green 
points showing the stable and unstable fixed points as 
calculated from the Hamiltonian in eqn. (1) and Dν(J) and 
f1(φ,J) in eqns. (3) and (4). A good agreement can be seen. 
The same result is shown in the phase space plot in the 
action-angle variables, Fig. 2. In Fig. 3, an attempt is 
made to compare the distribution Ψ(J) versus J between 
the calculation and the simulation result. The distribution 
of Ψ(J) is obtained by integrating the particle counts over 
φ = -180o  to φ =180o for each J interval. It shows a large 
discrepancy at J where the nonlinear resonance islands 
should appear. This difference can not be explained 
simply by the constraints described in the reference (1). 
While the distribution for the islands in the simulation 
show a broad bump, the theoretical model gives a much 
thinner bump. Particularly, in the simulation the electron 
distribution in the resonance islands gives a long tail but 
the tail from the model drops quickly. For many different 

kicking strength, they all exhibit the same trend. A study 
is also made to see if this discrepancy is due to the choice 
of our random number scheme by replacing the uniform (-
1,1) scheme by a Gaussian scheme. The result shows that 
there is no obvious difference between these two different 
schemes. Thus, the discrepancy between the simulation 
and the first order theory is likely to be due to higher 
order effects of the nonlinear multipole strength, which 
will be pursued further later. 

 

 
 

Fig. 1: The phase space distribution of the normalized 
coordinates (x, px) for k = 1000/m3 near a 4th order 
nonlinear resonance. The points are from the simulation 
result when electron beam reaches equilibrium 
distribution. The four islands are seen clearly. The red 
curves show the separatrix and the green dots show the 
fixed points. 

 
Fig. 2: The bottom plot shows the phase space distribution 
in action-angle variables (J,φ). Conditions are the same as 
in Fig. 1. The top plot is the integrating of the counts 
along J for the same interval of φ, i.e. Ψ(φ).  
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Fig. 3: Comparison of the beam equilibrium distribution 
vs. J, when k =1000/m3.  
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Near fractional tune=0.25 with negative k and 
far away from resonance  

Due to the above discrepancy between the results from 
the model and that from the simulation, checks are 
performed for negative values of k, and also in regions far 
away from resonance. When k is set to be negative, the 
nonlinear islands will not be produced in the phase space 
when fractional tune νx is set to be above 0.25. In Fig. 4, 
both the results from the model and from the simulation 
are shown for k = 0, -1000, -10000/m3. The results show 
good agreement, but then the nonlinear resonance effects 
are not pronounced in any case. In a detailed inspection of 
the result, one finds that there is a tail beyond J > 0.15 
mm*mrad when k is large.  

Fig. 5 shows the distribution Ψ(J) with kicking strength 
k = 5000/m3 and at different tunes far away from the 4th 
order nonlinear resonance. The agreement is also good.  
This can be attributed to a factor, ν-m/n in the 
denominator of eqn. (2). 
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Fig. 4: Distribution Ψ(Jx) versus Jx for several negative 
k’s near a 4th order nonlinear resonance. 
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Fig 5: Distribution Ψ(Jx) versus Jx for k = 5000/m3 for 
different tunes far away from the 4th order nonlinear 
resonance. 

Quantum lifetime 
One of the important studies is to compare the quantum 

lifetime shortening factor calculated with eqn. (5) and that 
from the simulation near the 4th order nonlinear resonance. 
In Fig. 6 there are 3 sets of quantum lifetimes obtained 
from eqn. (5) and that from the simulation with k = 0, -
1000 and -5000/m3. It shows the quantum lifetime 
predicted by the model and that from the simulation at J < 
0.15 mm*mrad has only about 10% difference. It agrees 

within the model accuracy. At larger J, especially at larger 
k, the predicted quantum lifetimes are larger. This is 
related to the tail in the beam distribution in the 
simulation results when J is larger (J > 0.15 mm*mrad) 
and k is larger (k > 5000/m3). As for the positive k kicking 
strength, a continued study is underway. A comparison 
with other theoretical models, particularly in Ref. [2], will 
also be made. 
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Fig. 6: The quantum lifetime vs Jx at n=0.251111 for 
kicking strength k = 0, -1000, -5000/ m3. 

CONCLUSION 
We have made a simulation study on the electron beam 

equilibrium distribution and effects on the quantum 
lifetime in the proximity of a 4th order nonlinear 
resonance. When the simulation results are compared with 
the theoretical calculation obtained by solving the Fokker-
Planck equation to the first order, it shows that the model 
calculation is not able to predict correctly the electron 
beam equilibrium distribution, especially in the resonance 
islands region. While the model predicted quantum 
lifetime is reasonably good at lower kicking strength, it 
still has large discrepancy at larger J and larger kicking 
strength. A further study to improve the theoretical model 
is still needed and is under study. 
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