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Abstract

The general exact solution exploited in [1] is applied, in-
troducing suitable dimensionless parameters, and using ap-
propriate asymptotic limiting forms, to compute the wake
field multipoles for the different paradigm cases of LHC
and DAFNE.

INTRODUCTION

In [1] we computed the fields of a (bunched) beam in a
pipe with walls of finite conductivity and thickness, for the
simplest pipe-geometry (circular). We solved the problem
by computing the Fourier transform of the wake potential
Green’s function produced by a point particle running at
constant velocity βcûz , at a distance ro off axis of a circu-
lar cylindrical pipe with radius b, wall conductivity σ and
thickness ∆.

The solution found is exact but complicated, so that in
most cases of practical interest one has to resort to suit-
able limiting forms. In this paper we introduce a number
of asymptotic approximations appropriate, in particular, to
LHC (Large Hadron Collider) and DAFNE, whose relavant
figures are collected in Tables I and II.

THE GREEN’S FUNCTION

In [1] we obtained the Green’s function for an off-axis
point particle running parallel to the axis of a circular pipe
of radius b with finite conductivity σ and thickness ∆, viz.:

G̃m(k, r, r0) =G̃∞
m (k, r, r0)+

qo

2πεo

Im(k′r0)Im(k′r)
bk′Im(k′b)

N(k)
D(k)

,

(1)
where

G̃∞
m (k,r,r0)=

qo

2πεo

{
A(k, r, r0)−

Im(k′r0)
Im(k′b)

Km(k′b)Im(k′r)
}

.

(2)
In Eq. (2) k′ = k/γ, G̃∞

m is the solution of the wave equa-
tion corresponding to the perfectly conducting pipe, A(·)
,N(k) and D(k) are defined in [1] and

η =
Zoσ − ikβ

ikβ
(3)

where Z0 = (µ0/ε0)1/2 is the free space wave impedance.
Eq. (1) reduces to the solution obtained in [2] in the limit
∆ →∞ of an infinitely thick wall.

ASYMPTOTIC APPROXIMATIONS

In most cases of practical interest, one may resort to
suitable (asymptotic) limiting forms, since many problem-
specific (dimensionless) parameters are either very large or
very small.

Large parameters

The following inequality always holds in view of the as-
sumed beam spectral features:

∣∣k̄b
∣∣= ∣∣∣√k′2 − iσβkZo

∣∣∣b∼
∣∣∣√−iσβkZo b

∣∣∣≡
∣∣∣∣ b

δwall

∣∣∣∣�1,

(4)
where

δwall = (−iσβkZo)
−1/2 (5)

is the electromagnetic skin depth. One has also |k̄d| � 1,

since d
>∼ b. Note also that, within the useful spectral

ranges discussed above, one has from Eq. (3):

η � −i
Zoσ

kβ
. (6)

Accordingly, using the well known large-argument
forms of the (modified) Bessel functions:

Im(z) ∼ ez

√
2π z

, Km(z) ∼
√

π

2z
e−z, (7)

for Im(·) and Km(·) with arguments k̄b and k̄d in Eq. (1),
one gets a simpler form for both N(k) and D(k), viz.:

N(k)=−k̄2K ′
m(k′d) sinh k̄∆+ηk′k̄Km(k′d) coshk̄∆, (8)

D(k)=sinhk̄∆
[
k′2η2Im(k′b)Km(k′d)−k̄2I ′m(k′b)K ′

m(k′d)
]

+ηk′k̄ coshk̄∆ [I ′m(k′b)Km(k′d)−Im(k′b)K ′
m(k′d)] . (9)

The relative error stemming from use of Eq.s (8), (9) in Eq.
(1) is shown in Fig.1 as a function of kb, for the lowest
order multipoles, in the special case (worst admissible one
for LHC Table I) σ = 5.7 · 107Ω−1m−1, γ = 5 · 102 and
b = 1.5cm. The absolute error within the spectral range of
interest is ∼ 10−6 ÷ 10−7.

Small parameters

Let us next discuss the asymptotic limit:

|k|b/γ ∼ |k|d/γ � 1. (10)

For reasons which will be clarified soon, it is convenient
to discuss separately the monopole (m = 0) and multipole
(m ≥ 1) terms.
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Figure 1: Relative error Γ on (2πε0/q)[G̃m − G̃∞
m ] versus

kb after assuming k̄b � 1 and using Eq.s (8), (9) in place of
Eq. (1); monopole, dipole and quadrupole terms (m=0,1,2).

The Monopole Term (m = 0) In the limit Eq. (10),
one uses the zero-th order modified Bessel functions ap-
proximation valid for small arguments [3]:

I0(ζ) ∼ 1, K0(ζ) = −log(ζ), (11)

and hence the monopole term in Eq. (1) using Eq.s (8),(9)
can be written

G̃0(k, r, r0) = G̃∞
0 (k, r, r0)+

qo

2πεo

γ2

bk2

[
b

2
+ η δwall coth (∆/δwall)

]−1

. (12)

For a very thick pipe wall, |k̄∆| ∼ |∆/δwall| � 1, whence
| coth (∆/δwall)| ∼ 1, and Eq. (12) becomes:

G̃0(k,r, r0)=G̃∞
0 (k, r, r0)+

qo

2πεob

γ2

k2

(
b

2
+ηδwall

)−1

(13)
which, in the further limit (appropriate, e.g., both for LHC
and DAFNE): ∣∣∣∣2η

δwall

b

∣∣∣∣ � 1, (14)

yields the known result [2]:

G̃0(k,r, r0)=G̃∞
0 (k, r, r0)+

qoβγ2

2πεob
(1 + i)

√
β

2σZok
. (15)

For a finite-thickness pipe wall, | ∆/δwall |≥ 1, in the same
limit Eq. (14), Eq. (12) yields:

G̃0(k,r, r0)=G̃∞
0 (k, r, r0)+

qoβγ2

2πεob
(1 + i)

√
β

2σZok
tanh (∆/δwall). (16)

This latter, in the limit of infinite wall thickness,
|∆/δwall| → ∞, gives back Eq. (15). The relative error
produced by using Eq. (16) in place of Eq. (1) is shown in
Fig.2 as a function of kb.
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Figure 2: Relative error Γ on (2πε0/q)[G̃m − G̃∞
m ] versus

kb after assuming kb � 1 and using Eq.s (16), (21) in
place of Eq. (1); monopole, dipole and quadrupole terms
(m=0,1,2).

Multipole Terms (m ≥ 1) In the asymptotic limit
|k|b/γ � 1, |k|d/γ � 1 one uses in Eq.s (2), (1), (8)
and (9) the small-argument asymptotic form of the modi-
fied Bessel functions of m-order [3]:

Im(ζ) ∼
(

ζ

2

)m 1
m!

,

Km(ζ) ∼ (m− 1)!
2

(
ζ

2

)−m

, (m > 0). (17)

Hence, from (2):

G̃∞
m (r, r0) ≈ G̃free space

m (r, r0)−
qo

2πεo

1
2m

(rro

b2

)m

,

(18)
where

G̃free space
m (r, r0) ≈

qo

2πεo

1
2m

(rro

b2

)m

R(r, ro), (19)

R(r, ro) =
{

(r0/r)m

(r/r0)m ,
r0 ≤ r ≤ b,
r ≤ ro,

(20)

and, from Eq.s (1),(8) and (9):

G̃m(k, r, r0) = G̃∞
m (k, r, r0) +

qo

2πεo

1
m

(rro

b2

)m

·

·


1 +

k2ηb

mk̄γ2
tanh (k̄∆)

k2ηd

mk̄γ2
+ coth (k̄∆)

k2ηd

mk̄γ2
+ tanh (k̄∆)



−1

. (21)

which, using Eq.s (5), (6) can be equally written:

G̃m(k, r, r0) = G̃∞
m (k, r, r0) +

qo

2πεo

1
m

(rro

b2

)m

· (22)

·


1+

b/δwall

mβ2γ2
tanh

(
∆

δwall

) d/δwall

mβ2γ2
+coth

(
∆

δwall

)

d/δwall

mβ2γ2
+tanh

(
∆

δwall

)


−1

.
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The relative error produced by using Eq. (21) in place of
Eq. (1) for m=1,2 is shown in Fig.2.

As expected, the error increases with kb, but remains
very small throughout the meaningful spectral range. Sim-
ilar to the monopole term case, for a very thick pipe wall
, one has |k̄∆| ∼ |∆/δwall| � 1, and hence sinh k̄∆ ∼
cosh k̄∆. Thus Eq. (21) becomes:

G̃0(k,r, r0)=G̃∞
0 (k, r, r0)+

qo

2πεom

(rro

b2

)m
(
1+

b/δwall

mβ2γ2

)−1

.

(23)
The finite-thickness pipe wall , |∆/δwall| ≥ 1 case, will be
now discussed with reference to a number of limiting cases
relevant to our applications.

LHC In the Large Hadron Collider one has:∣∣∣∣b/δwall

β2γ2

∣∣∣∣ � 1,

∣∣∣∣d/δwall

β2γ2

∣∣∣∣ � 1. (24)

Accordingly, for not-too-small values of |∆/δwall|,

G̃m(k, r, ro) = G̃∞
m (k, r, ro) +

qo

2πεo

1
m

(rro

b2

)m
[
1− b/δwall

mβ2γ2
coth

(
∆

δwall

)]
. (25)

Equation (25) reproduces the limit form of Eq. (23) under
Eq. (24) provided ∆ � |δwall|. In the extreme limiting
case |∆/δwall| � 1 the expression in square brackets in
Eq. (21) becomes simply (1 + b/d)−1, so that using (18),
one has:

G̃m(r, r0) ≈ G̃free space
m (r, r0)−

qo

2πεo

1
2m

(rro

b2

)m
[
1− 2

(
1 +

b

d

)−1
]

(26)

which reduces to the free-space term, if ∆ → 0, i.e. d → b,
as expected.

Ultrashort Bunch Machines In ultrashort bunch ma-
chines, including, e.g., DAFNE, one has (Table II):∣∣∣∣b/δwall

mβ2γ2

∣∣∣∣ � 1. (27)

Accordingly, for not-too-small values of |∆/δwall|,

G̃m(k, r, r0) = G̃∞
m (k, r, r0)+

qo

2πεo

(rro

b2

)m

β2γ2 δwall

b
coth (∆/δwall). (28)

In the extreme limiting case |∆/δwall| � 1 the expression
in square brackets in Eq. (22) becomes simply (1+b/d)−1,
so that using (18), one has:

G̃m(r, r0) ≈ G̃free space
m (r, r0)−

qo

2πεo

1
2m

(rro

b2

)m
[
1− 2

(
1 +

b

d

)−1
]

(29)

which reduces to the free-space term, if ∆ → 0, i.e. d → b,
as expected.

LHC Design parameters

Nominal Circumference Lc 26658 m
Number of bunches Nb 2835
Bunch length σs (7÷ 13)cm
Lorentz factor γ 500÷7000
Pipe diameter 3 cm
Wall thickness 50 µm (Cu) + 1 mm (SS)
Wall conductivity (5.7 · 107 ÷ 1010)Ω−1m−1

Circulation frequency 11.2455 kHz

Table I

DAFNE Design parameters

Nominal Circumference Lc 97.69 m
Number of bunches Nb 120
Bunch length σs 2cm
Lorentz factor γ 1000
Pipe diameter 10 cm
Wall thickness 2 mm (Al)
Wall conductivity 3.4 · 107Ω−1m−1

Circulation frequency 368.26 MHz

Table II
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