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Abstract

We use the Gaussian approximation to confirm that, as
noted for Haissinski’s equation, a steady state solution for
the longitudinal phase space distribution function always
exists if a physically regularized inductive wake is used.

INTRODUCTION

In a recent paper [1] we have shown that assuming a lo-
calized wake and the Gaussian approximation for the longi-
tudinal beam distribution function one can understand the
nature of the stationary solutions for the inductive wake,
by comparison between the resulting map and the Haissin-
ski equation, which rules the (less realistic) case of a uni-
formly distributed wake. In particular we showed that the
non-existence of solutions of Haissinski’s equation when
the inductive wake strength exceeds a certain threshold [2]
corresponds to the onset of chaos in the map evolving the
moments of the beam distribution from turn to turn. In this
paper we use the same map to confirm that, as noted in
[2] for Haissinski’s equation, a steady state solution for the
longitudinal phase space distribution function always exists
if a physically regularized inductive wake is used.

THE MOMENT MAPPING

The longitudinal beam dynamics in electron storage
rings can be described by the stochastic equations of mo-
tion for a single particle (Langevin equations). Introducing
the canonical variables:

x1 =
longitudinal displacement

natural bunch length
,

x2 =
relative energy spread

natural energy spread
,

and integrating the Langevin equations over one turn, we
obtain the following stochastic mapping:(

x1

x2

)′
= U

(
x1

Λx2 + r̂
√

1− Λ2 − φ(x1)

)
,

where �X ′ = (x
′
1, x

′
2) is �X = (x1, x2) after one turn. Here

U is the rotation matrix:

U =
(

cos µ sinµ
− sin µ cos µ

)
, (1)

µ = 2πνs, νs being the synchrotron tune, Λ =
exp(−2/T ), T being the synchrotron damping time mea-
sured in units of the revolution period, r̂ is a Gaussian ran-
dom variable with < r̂ >= 0 and < r̂2 >= 1. The wake

force φ(x1) is represented by:

φ(x1) =
Qtot

σ0E0

∫ ∞

0

ρ(x− u)W (u)du. (2)

where E0 is the nominal beam energy, σ0 is the nominal
relative energy spread (σ0E0 is the natural energy spread),
W (x) is the wake potential and ρ(x) is the charge den-
sity normalized to one. Note that synchrotron oscilla-
tions have been linearized, and radiation is localized at
one point of the ring [3]. The above stochastic mapping
is equivalent to an infinite hierarchy of deterministic map-
pings in the following statistical quantities: x̄i =< xi >,
σij =< (xi − x̄j)(xj − x̄j) >, and so on, which are the
moments of the distribution function ψ(�x), < ∗ > indi-
cating an average over all particles. Our main assumption
is that the distribution function in phase space is always a
Gaussian, even in the presence of a wake force:

ψ(x1, x2) =
exp[12

∑2
i,j σ−1

i,j (xi − x̄i)(xj − x̄j)]

2π
√

detσ
. (3)

We consider a purely inductive wake function

W (x) = bδ′(x) (4)

and split the mapping for the second order moments into
three parts, representing the effect of radiation, wake-force
and synchrotron oscillation, as follows:
radiation:

σ′11 = σ11

σ′12 = Λσ12 (5)

σ′22 = Λ2σ22 + (1− Λ2),

wake force:

σ′11 = σ11

σ′12 = σ12 +
b

4
√

πσ11
(6)

σ′22 = σ22 +
bσ12

2σ11
√

πσ11
+

b2

6σ2
11π

√
3
,

synchrotron oscillation:

σ′ij =
2∑

h,k=1

UihσhkU t
kj . (7)

The stability of the system depends on the values of the
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Figure 1: Purely inductive wake function: σij versus b for
T = 200, νs = 0.085 with NS = 1 (top) and Ns = 150
(bottom).

synchrotron tune νs, the damping time (measured in num-
ber of turns) T and the strength of the wake force b. We
studied a wide range of parameters values and found stable
solution of period-one and period-two, multi-stable states
and coexistence of solutions with different periodicity. As
an example we plot σij(b) in Fig. 1 (top) for T = 200 and
νs = 0.085. In the parameter space a chaotic region shows
up and this behavior mainly depends on the b value but is
almost indipendent on νs and T .

The localized wake approach can be extended to much
more general cases, even uniformly distributed wakes, de-
scribed by the Haissinski equation. To do so one should
introduce the superperiodicity Ns and let it grow to infin-
ity. This is done introducing in the mapping the following
substitutions: νs −→ νs/Ns, T −→ TNs, b −→ b/Ns

Computing σij(b) for different Ns and b > 0 we found
that as Ns increases the mapping curves converge to the
solution of the PWD equation.

In Fig. 1 (bottom) we show σij(b) with Ns = 150: the
chaotic behavior exists also for Ns >> 1.

HAISSINSKI EQUATION

Introducing the syncrotron variables ε = E − Es and
τ = (z − zs)/(βc), where E and z rispectively are the
energy and longitudinal position of the single particle, the
suffix s indicates the (synchronous) ideal particle with the
nominal energy, β is the relativistic factor and c is the light

velocity in vacuum. In the synchrotron phase space {τ, ε}
the single particle dynamics is described by the following
equations

·
τ = −αε

Es
,
·
ε =

eVRF (τ)− U0 −Dε

T0
−M(t) (8)

where α is the momentum compaction factor, VRF (x) the
radio frequency accelerating potential, T0 the particle revo-
lution period, U0 the energy lost at every turn, D the damp-
ing constant and M(t) describes the quantum fluctuations.
The total potential felt by the particle due to the accelerat-
ing structure and the wake field is

V (τ) = VRF (τ) +
∫ ∞

0

eW (τ)u(τ − ξ)dξ (9)

where u(x) is the equilibrium longitudinal particle density

u(x) =
∫ +∞

−∞
ψ(x, y)dy (10)

which satisfies the normalization condition
∫ +∞

−∞
u(x)dx = 1. (11)

Introducing the variables x = ω0τ/σ0, where σ0 =√
H0T0/e

·
V RF (0), H0 is the nominal particle energy, ω0

the revolution frequency and letting eVRF (0) = U0 the
Haissinski equation can be written as [4]:

u(x) = K exp
{
−x2

2
−

∫ +∞

0

S(y)u(x− y)dy

}
, (12)

where

S(y) =
∫ y

√
2ω0σ0

0

w(ξ)dξ, (13)

w(ξ) =
e2N

T0H0
W (ξ), (14)

with total bunch particles N . Following [5] and letting
w(x) = Bδ′(x), we rewrite equation (12) as

log u(x) + Bu(x) = log K − x2

2
. (15)

The solution of this equaton is given in terms of the Lam-
bert W-function [6], which is defined by the series expan-
sion:

WL(z) = Σ∞
n=0

(−n)n−1

n!
zn (16)

and is

u(x) =
WL[KB exp (−x2/2)]

B
(17)

For B ≥ 0 the solution of (12) exists always. On the other
hands, for B ≤ 0, in particular for

B ≤ −
∫ 1

0

1− x√
x− log x− 1

∼ −1.55061 (18)
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no value of K can satisfy the normalization condition (11).
If B < −1.55061 the sistem is unstable, therefore the so-
lution of Haissinski equation does not exist. This result,
well known in Literature [5], and recently studied in [2], is
in very good agreement with the Gaussian approximation:
there is a threshold value of b such that below this threshold
(bthr) the mapping gives a chaotic behavior for the second
order moments. In Fig. 2 we show bthr(Ns): increasing the
superperiodicity bthr first shifts, then saturates approaching
the threshold value B = −1.55061 given by the Haissinski
equation.
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Figure 2: The threshold value of b versus Ns, for which
the moments σij(b) become unstable and a chaotic regime
shows up. We assume T = 200 and νs = 0.085.

REGULARIZED INDUCTIVE WAKE

In a recent paper [2] one of the authors suggested to reg-
ularize the singularity of the wake function δ′ in a physical
way replacing the wake δ′ with

Wr(x) = b
δ(x)− δ(x− a)

a
, (19)

where a is a positive parameter, so as to satisfy the causal-
ity condition. Obviously when a → 0 we recover the δ′

function. The regularized wake (19) takes into account the
fact that to compute the derivative of the δ function at x we
need information around the neighborhood of x, but physi-
cally this is impossible, because each particle is influenced
only by all those who preceede it but not follow. The map-
ping for the wake force is the following

σ′11 = σ11

σ′12 = σ12 +
b exp(−a2/4σ11)

4
√

πσ11

σ′22 = σ22 +
b exp(−a2/4σ11)σ12

2
√

πσ11σ11
(20)

−b2(1− exp(−a2/4σ11))2

4a2σ11π

+
b2(1+exp(−a2/σ11)−2 exp(−a2/3σ11))

2
√

3a2σ11π
,

We found that the chaotic behaviour disappears both for
Ns = 1 and Ns >> 1 and the system is always sta-
ble, yelding periodic solutions in the parameters space. In
Fig. 3 we show σ11(b) for T = 200, νs = 0.085 with
Ns = 150, using different values of a. Smaller values of
the parameter a entail a behaviour closer to that one of the
δ′(x) wake. The comparison of Fig. 1 and 3 shows that
the regularization of the wake cancels the instabilities. Our
results agree with those obtained in [2].
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Figure 3: σ11(b) for a = 0.1 (dotted line), a = 0.05
(dashed line), a = 0.01 (solid line) using the regularized
wake function with T = 200, νs = 0.085 and Ns = 150.
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