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Abstract

We face, in a stochastic framework, the problem of the
halo formation in high intensity beams of charged particles.
We sum up our recent results on this argument, and in the
final part of the paper we introduce non Gaussian distribu-
tions as good candidates to account for sensible escape of
particles from the density core.

INTRODUCTION

In high intensity beams of charged particles, proposed in
recent years for a wide variety of accelerator–related appli-
cations, it is very important to keep at low level the beam
loss to the wall of the beam pipe, since even small frac-
tional losses in a high–current machine can cause exceed-
ingly high levels of radioactivation. However, numerical
simulations, and a few experiments at high current pro-
ton linacs, suggest that an extended, low–density halo is
formed around the beam: it is then necessary to obtain a
more quantitative understanding of the physics of the halo,
in order to control and reduce its undesirable effects. In re-
cent papers [1, 2] we faced this problem in the framework
of a stochastic approach to the collective beam dynam-
ics. Charged particle beams are usually described either
in terms of classical dynamical systems, i. e. by a collision-
less plasma with the dynamics of a suitable phase space, or
by a Fokker–Planck equation in the phase–space variables.
In our alternative approach [3] we propose instead to de-
scribe the collective dynamics of the particle beams by a
stochastic and time–reversal invariant description in con-
figuration space. This picture is effective in the regime of
stability, where a balance is realized between the energy
dissipation and the external energy pumping. The sam-
ple paths of the representative particle are described by a
diffusive stochastic differential equation ruled by the beam
emittance, and the two coupled stochastic–hydrodynamic
equation describing the dynamics of the beam density pro-
file and the motion of its center are derived by a stochas-
tic variational principle [4]. The two coupled equations
are also equivalent to a unique linear equation of the form
of a (mesoscopic) Schrödinger equation, with the univer-
sal Planck constant replaced by the emittance of the beam.
Our approach, starting by an apparently different point of
view, formally converges then to the so–called quantum–
like approach to beam dynamics [5]. In the framework of
our scheme is also possible to implement an active con-
trol for the beam dynamics [6], an aspect which could be
useful in order to eliminate halos. In references [1, 2] we

have adapted our scheme to a preliminary study of the prob-
lem of halo formation and control, and we have described
the collective, not deterministically controllable effects by
diffusive (Gaussian) fluctuations. In the present paper we
make the hypothesis that non–Gaussian processes, for ex-
ample the family of the Student distributions, with longer
tails and non-zero jump probability could provide a better
understanding of the long–distance particle behavior.

STOCHASTIC MODEL FOR HALOS

The coupled stochastic–hydrodynamic equations de-
rived by the stochastic variational principle [4] and describ-
ing the particle beam dynamics in the stability regime [3]
take the form , respectively, of a continuity equation:

∂tρ = −∇ · (ρv) , (1)

and of an evolution (Madelung) equation for the conserva-
tive dynamics

∂tS +
m

2
v2 − 2mD2∇2√ρ√

ρ
+ V (r, t) = 0 , (2)

where , if m is the mass of a particle, the drift velocity
and the (Jacobi-Madelung) function S are connected by the
gradient form mv = ∇S, and the diffusion coefficient is
proportional to the beam emittance α: α = 2mD. Eqns.
(1) and (2) describe the collective behavior of the beam at
each instant of time through the evolution of both its par-
ticle density and its velocity field. Introducing the repre-
sentation ψ =

√
ρ eiS/α , the two coupled real equations

(1) and (2) are equivalent to a single complex Schrödinger
equation for the function ψ, with the Planck action constant
h̄ replaced by the unit of action α:

iα∂tψ = − α2

2m
∇2ψ + V ψ . (3)

In this “Schrödinger-like” (Sl) formulation the phenomeno-
logical “wave function” ψ carries the information on the
dynamics of both the beam density and the beam velocity
field, since the velocity field is determined via the gradient
relation by the phase function S.

Space–charge effects

Among the various possible sources of halos, in [1] we
have taken into account the spreading effects due to the
presence of a space–charge distribution in the framework
of our approach. We have implemented the Sl-equation (3)
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Figure 1: The radial distribution sw2(s) compared with
the distribution in absence of space charge (dashed line)
for a strong space-charge strength . All quantities are di-
mensionless.

in a cylindrically symmetric configuration and coupled it
with the Maxwell equations for the electromagnetic field
generated by the charge distribution. We have thus ob-
tained two nonlinear coupled equations. Considering the
stationary distribution of the particle density, we have ob-
tained that the density profile associated to the presence of
space–charge is sensibly spread with respect to the Gaus-
sian profile obtained if space–charge is absent (see Fig. 1).
The distribution exhibits a larger dispersion, and we have
shown that, for sufficiently intense charge density, we can
find up to 105 particles per meter beyond a distance of 10σ
(with σ denoting the width of the Gaussian core), at vari-
ance with the zero particles in absence of charge effects.

Stationary halo distributions

The solutions discussed in the previous subsection have
been obtained through a numerical approach, because the
nonlinearly coupled equations do not allow for exact ana-
lytical solutions. In the same reference [1] we have then
also employed a variational technique to obtain an approx-
imate analytical version of the numerical solution for the
density profile. In fact, an analytic expression for the den-
sity profile leads to analytical forms for the drift velocity
and the generating potential, which in turn are needed if
one wish to engineer a controlling mechanism to eliminate
the halo. We have then optimized a reasonable test form
for the density profile, and we have found that the varia-
tional solutions show the presence of a node in the density
profile, and a corresponding singularity in the potential. A
node can be the signature for the presence of a ring–shaped
halo, well separated by the core; in fact, it is completely
open the question if halo is due to long tails in the den-
sity distribution, or if a true halo must be separated from
the core. On the other hand, we have obtained a tail by
space–charge effects, which however are not the only pos-
sible source of halo. Then, in the spirit of a preliminary in-
quiry about both the interpretations, we have reversed our
point of view; we have in fact explicitly introduced a re-
alistic ring distribution, and we have used the dynamical
equations to obtain information on the characteristics of the

associated potential and of the associated velocity fields.
The potential exhibits an extra relative maximum if com-
pared with the harmonic one, while in correspondence the
velocity field exhibits a “bump” with respect to the straight
(linear) behavior.

Dynamical control of the halo

In reference [2] we have extended our analysis to the
problem of the halo dynamics, considering both the the
halo elimination and its reformation. This last problem
cannot be accounted for in a pure Quantum–like (Ql) de-
scription since, because of the stochastic extremal princi-
ple, a change in the distribution produces a change in the
dynamics. On the other hand the Ql dynamics leads to
distributions which are stable attractors; thus, the halo, if
scraped away, will be restored in characteristic times, but
through a not extremal Fokker–Planck evolution. We have
then accordingly modified our scheme: the velocity field
changes slowly on the relaxation time scales, while the evo-
lutions are ruled only by a Fokker–Planck equation until the
balance has been restored. We got an estimate of the time
τ needed by a non stationary, halo–free distribution to re-
lax toward the stationary distribution with a halo when the
dynamics is supposed frozen in the configuration that pro-
duces this halo: we have obtained τ ≈ 10−8÷10−7sec [2].
Since this relaxation time depends on the parameters of our
beam, a comparison with possibly measured phenomeno-
logical times could constitute a good check on the sound-
ness of the model. We have also begun to analyze possible
transitions from a beam with halo toward a halo–free one,
putting an emphasis on the possible dynamics which allows
this halo elimination.

NON GAUSSIAN DISTRIBUTIONS

Non gaussian stationary states

Values of the maximum-to-RMS ratio as large as 10 or
12 have been observed in simulations and it is generally
agreed that this is called halo (see [8] p. 286). Hence there
are good reasons to try non gaussian transverse distribu-
tions with longer tails so that the probability of finding par-
ticles far away from the beam axis becomes larger. Gener-
alized Student distributions Σ(ν; a2)

f(x) =
Γ

(
ν+1
2

)

√
π Γ

(
ν
2

)
aν

(a2 + x2)
ν+1
2

, ν > 0. (4)

are good candidates. They have finite variance σ2 only for
ν > 2 and a2 = (ν − 2)σ2. Moreover Σ(ν, (ν − 2)σ2)
converges in distribution to N (0, σ2) for ν → +∞. The
radial control potential for a stationary cylindrical beam:

Vν(r) =
α2

2mσ2
r2 (ν + 2)

r2

ν−2 + (ν + 10)σ2

4

[r2 + (ν − 2)σ2]2

tends to be harmonic for ν → +∞, and is constant beyond
a certain radius. This possibly points to some effect due to
the presence of the conducting walls.
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Lévy driven processes

The trajectories of a process with a stationary Student
Σ(ν, (ν − 2)σ2) ground state can be simulated from the
Gaussian driven SDE

dX(t) = vν(X(t))dt +
√

2D dW (t)

with suitable velocity field. On the other hand a differ-
ent kind of process can be generated by independent incre-
ments with Student law (4) through a SDE

dX(t) = β(X(t))dt + γ dS(t)

where dS(t) is distributed according to Σ(ν; a2), and β(x)
is a suitable velocity field. No complete theory is available
for a Lévy driven stochastic mechanics.

The Student distributions Σ(ν; a2) are infinitely divisi-
ble (Lévy distributions) [9]. Hence they are possible limit
distributions of row-sums of r.v.’s, but different from the
gaussian. As every infinitely divisible law, the Σ(ν; a2)
are possible distributions of the increments of a Markov
process with independent increments (Lévy process) [10].
Non-gaussian Lévy processes have moving discontinuities:
only gaussian Lévy processes have almost every trajec-
tory everywhere continuous [11]. The standard example
of a non-gaussian Lévy process is the compound Poisson
process. The rate of occurrence, and the height of the
moving discontinuities are regulated by the Lévy function
Lt(x) characteristic of a given process with independent
increments [11]. However the Lévy function of a Student
Σ(ν; a2) process is not explicitly known.

Discontinuities in these processes can be used to de-
scribe the occasional escape of particles out from an other-
wise well collimated beam in an accelerator. Moreover, by
suitably tuning the parameters (a and ν) we can also keep
the transverse distribution of the beam reasonably close to a
gaussian. We can contrast the trajectories for both a Gauss
and a Student process with comparable dispersions. In the
Figures 2, 3 a few examples of the Student trajectories are
produced. Since for fixed a the Student variance (which
diverges for 0 < ν ≤ 2) is a decreasing function of ν, it is
apparent that also the jump probability and their length will
generally decrease with ν. The Figures for ν > 2 (finite,
decreasing variance) are selected among the possible cases
by excluding all the trajectories showing an almost gaus-
sian behavior. For ν > 2 several trials are needed before
getting a trajectory definitely drifting away from the beam
core.

In this model we suppose that a Student-Lévy noise
will be active only inside the beam, while beyond a given
distance from the core the process will be driven by a
Gauss noise; moreover the velocity field attracts the trajec-
tory back toward the core only in its neighborhood, while
beyond a given distance the process is just a free diffu-
sion. Remark that in this example the Gaussian trajectories
would be essentially that of an Ornstein–Uhlenbeck pro-
cess.
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Figure 2: Student process with ν = 2.0
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Figure 3: Student process with ν = 3.0

We conclude by remarking that in our opinion for a halo
model the possibility of rare, long jumps in the trajecto-
ries is more relevant than just the modest increase in the
variance produced by the Student noise with respect to the
Gauss (almost everywhere continuous) noise.
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