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Abstract

Linear coupling with space charge effects in coasting
beams is studied by using the second order moment equa-
tions. A coherent shift of the resonance condition and
nonlinear saturation effects in the emittance transfer result
from space charge. Crossing through the linear coupling
resonance from below allows full emittance exchange,
whereas the exchange is found to be largely suppressed by
space charge effects for crossing from above.

INTRODUCTION

Linear coupling for high-intensity beams is of practical
importance in synchrotrons like the SIS18 at GSI, where
it may be desirable to eliminate the strong imbalance of
transverse emittances before extraction. In the absence of
space charge, linear coupling by skew quadrupoles is well-
understood [1, 2, 3]. Space charge effects, on the other
hand, have recently been shown in a linearized analytical
study to be significant [4, 5] as they lead to a modification
of the single particle resonance condition Qx − Qy = N
(N harmonic of skew).

MODEL

A consistent study must go beyond a linearized theory,
therefore we present here a fully self-consistent modelling
based on the complete second order moment equations de-
rived by Chernin [6], which couple all second order mo-
ments of a beam, including the “even” (〈xx〉, 〈xx ′〉, etc.)
as well as the “odd” (〈xy〉, 〈xy ′〉, etc.) coupling moments,
with ′ ≡ d/ds. We use these equations and follow the no-
tation by Chernin assuming v is the four-component vector
(x, x′, y, y′). A 4× 4 matrix of second order moments Σ is
defined by Σi,j ≡ 〈vivj〉 − 〈vi〉〈vj〉, also

M ≡




0 1 0 0
−k̃x 0 −j̃ 0
0 0 0 1
−j̃ 0 −k̃y 0


 . (1)

The matrix elements contain external and space charge
force terms: k̃x = kx−qxx, k̃y = ky−qyy, and j̃ = j−qxy ,
with kx, ky the horizontal and vertical focusing, j the ex-
ternal linear coupling, and the (nonlinear) space charge de-
focusing qxx, qyy and qxy . The time-dependence of Σ is
then given by

Σ′ = MΣ + (MΣ)T , (2)
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Figure 1: Rms emittance evolution for Qx0 = 4.16 com-
pared with zero-space-charge case for Qx0 = 4.2 (dotted).

where T denotes the transposed matrix. These equations
become the well-known envelope equations, if the coupling
terms are set to zero.

We approximate the real lattice by a constant focusing
lattice and the linear coupling by a single thin lens kick
generating all harmonics. For initializing the numerical
calculation we use a solution that has been matched in the
absence of skew with initial εx = 40π mm m-rad and
εy = 10π mm m-rad. We use a fixed vertical machine
tune of Qy0 = 3.2, and initial vertical space charge tune
shift of ∆Qy = −0.2 – typical values for the SIS18 (216
m circumference). The coupling is given in terms of N s as
the number of turns required for a full emittance exchange
exactly on the resonance, ignoring space charge.

APPLICATIONS

We study the case of split tunes (N = 1) related to the
SIS18, and assuming Ns = 200. The maximum possi-
ble emittance transfer – far from a complete exchange –
occurs for Qx0 = 4.16. The corresponding time depen-
dence is shown in Fig. 1, along with the familiar case of
zero space charge with full exchange exactly on the reso-
nance at Qx0 = 4.2. In both cases the exchange process
is a periodic one, but space charge limits the exchange of
emittances to only 10 π mm m-rad for this relatively weak
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Figure 2: Maximum achievable rms emittance exchange
for N = 1 as function of Qx0, with Ns = 200 (dashed)
and Ns = 1000 (continuous) compared with zero-space-
charge case (dotted, Ns = 200).

coupling.
We show in Fig. 2 the maximum emittance exchange for

two different values of Ns as function of Qx0 (kept constant
during each simulation run). As expected, the zero-space-
charge case shows full emittance exchange exactly on the
resonance at Qx0 = 4.2. The effect of space charge is:
(1) a downwards shift of the resonant tune as predicted in
Ref. [5]; (2) a strong asymmetry of the response curve, and
(3) a strong reduction of the maximum emittance transfer,
depending on the strength of skew. (2,3) are typical nonlin-
ear phenomena, which largely vanish if the space-charge-
dominated stop-band in Fig. 2 merges with the pure lin-
ear coupling stop-band by either strongly enhanced skew
or negligible space charge. In Ref. [5] an analytical cal-
culation of the self-consistent resonance location was de-
rived, with an approximate expression valid in the limit
|∆Qx,y| << Qx,y and N �= 0:

Qx −Qy = N + |∆Qx| εr − 1
2(1 +

√
εr Qy0/Qx0)

. (3)

Here, the second term on the r.h.s. is the coherent reso-
nance shift. Eq. 3 determines the Qx (from which Qx0 fol-
lows by matching), where the resonance appears for given
initial εr and in the linearized theory limit Ns →∞. Note
that we have assumed εr ≡ εx/εy ≥ 1, otherwise x and y
should be inverted. For our example we find Qx = 4.05, or
Qx0 = 4.14, which is confirmed by the simulation results
of Fig. 2. Using Eq. 3, together with the matching, leads to
a de-tuning. The dynamical reduction of ε r shifts the reso-
nance to larger Qx0 and further exchange is stopped. The
sharp r.h.s. edge of the stop-band with space charge is typ-
ical for nonlinear oscillations – see a similar behavior for
the envelope oscillation [7, 8].
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Figure 3: Maximum rms emittance exchange for un-split
tunes as function of Qx0 without external skew.

The resonance with un-split tunes (N = 0) is different.
The effect of the spontaneous “self-skewing” instability of
the second order “odd” eigen-mode dominates the picture
as shown in Fig. 3, where an external skew is absent. As
shown in Refs. [4, 9, 10, 5] the exponential instability of
this mode is an intrinsic second order feature of a space-
charge-dominated beam. The left edge of its stop-band is
defined by the condition Qx = Qy , and the right edge by
Qx0 = Qy0. Comparison with a case where a skew with
Ns = 200 was applied has shown only a small additional
effect. In a full particle-in-cell simulation additional higher
order effects (like the fourth-order “Montague resonance”)
were found to dominate the picture, but the coupling effect
on emittances is similar [4, 9].

For practical applications in the SIS18 we need to study
the effects dynamically by slowly shifting the horizontal
tune from lower to higher values across the resonance re-
gion, which is performed in a linear ramp extending over
10.000 turns. Fig. 4 shows the result for split tunes. The
emittance is found to be practically independent of the
speed of crossing – as long as very fast crossing is avoided
– and of the actual skew strength. It is mainly controlled
by the strength of space charge due to the fact that for
slow crossing the beam follows the matched solution of
the coupled lattice. To show this we have searched for
each tune in Fig. 4 a matched solution belonging to iden-
tical values of the two relevant kinematic invariants of the
coupled lattice [11, 12], and found a nearly perfect match
between the dynamical emittance curve and the matched
solutions. In Fig. 4 the emittances are found to be equal
for Qx0 = 4.186, where the code gives Qx = 4.082,
Qy = 3.083, hence Qx − Qy = 1 is satisfied to high
accuracy; beyond this point emittances switch symmetri-
cally. This is fully consistent with Eq. 3 predicting the
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Figure 4: Rms emittances for dynamical stop-band cross-
ing from below with linear tune ramp in time and N s =
200.

absence of the coherent resonance shift for εr = 1. The
self-consistent change of emittances is such that the linear
theory resonance stop-band is effectively never crossed, but
it moves along with the tune – a kind of “snowplow” ef-
fect: for each εr from Fig. 4 we use Eq. 3 to determine the
tune, where the resonance occurs, and find that it agrees
with the corresponding tune of Fig. 4 within a relative error
< 10−3. Hence, Eq. 3 models to good accuracy the tune -
emittance relationship for slow crossing, which agrees with
the matched solution of the coupled system. The exchange
in the absence of space charge, for comparison, is modelled
differently [2].

The nonlinear nature of the space charge effect leads to a
quite different result, if the resonance is crossed from above
(split tunes, εr > 1), see Fig. 5. Exchange of emittances is
not found, since the system “jumps” across the resonance
starting at a tune consistent with the sharp edge found in
Fig. 2 for stationary tunes. A slightly decreased Qx0 results
in a reduction of εr, which causes a shift of the stop-band to
the right according to Eq. 3 up to the point, where the tune
has left the resonance region. This counter-motion there-
fore suppresses emittance exchange, which is most effec-
tive for narrow stop-bands as in Fig. 2, hence significantly
stronger skew is needed to bring the final emittances closer
together or even get exchange. We find that a strong skew
with Ns ≈ 10 enforces almost full exchange, but this re-
sults in pronounced mismatch oscillations.

CONCLUSION

We have found that the combined effect of space charge
and linear coupling gives rise to new phenomena. Earlier
derived analytical conditions for resonance and instability
are confirmed in the linear small-signal regime. But they
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Figure 5: Rms emittances for dynamical stop-band cross-
ing from above (Ns = 200).

are significantly modified by space charge in the nonlinear
regime, which causes a strong asymmetry between cross-
ing from below and above. Synchrotron motion in bunched
beams may wash out some of the coherence effects and re-
quires a separate study using fully 3D particle-in-cell sim-
ulation.
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