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Abstract

A set of problems is presented for benchmarking beam
dynamics codes with space charge. The test suite contains
problems whose solutions can be found analytically or to
very high accuracy using numerical methods. Simulation
results are presented for problems in the test suite obtained
using the MaryLie/IMPACT, Synergia, and MAD9P codes.

INTRODUCTION

In recent years large-scale simulation has become in-
creasingly important, used in combination with theory and
experiment, to study and improve the performance of ex-
isting accelerators, and to further our understanding of the
physics of intense charged particle beams. A key issue for
such simulations is the treatment of space-charge effects,
which strongly influence the accuracy of the simulations.
The requirements for parameters such as the number of
macroparticles, the grid size, and the particle-advance step
size depend on issues such as the beam intensity and the
path length of the simulated beam. The path length, in par-
ticular, can vary from roughly a kilometer in a linac or cy-
clotron, to thousands of kilometers in a booster or accumu-
lator ring, to millions of kilometers in a large synchrotron.
Long-term simulations of beams with space charge in cir-
cular accelerators represents one of the most challenging
problems in computational accelerator physics.

In order to have confidence in our space-charge simu-
lations, and to choose simulation parameters that provide
the desired accuracy for the particular problem at hand, we
have begun to assemble a test suite of space-charge prob-
lems for code benchmarking. The suite presently contains
problems for which the solutions are known either analyt-
ically or are can be found to essentially arbitrary accuracy
through numerical means. Other benchmarking efforts are
also underway, some of which involve a comparison of
simulated results with experiments. See, for example [1],
which is based on experiments at the CERN-PS.
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THE TEST SUITE

KV Beam in a FODO Channel

This test problem consists launching a matched KV dis-
tribution in a FODO channel. The beam and transport sys-
tem parameters are as follows:

beam, particle=proton, ekinetic=6.7d-3 &
bfreq=10221.05558d6, bcurr=0.50d0

drs: drift, l=7.44d-2
drl: drift, l=14.88d-2
qd7: quadrupole, l=6.10d-2, g1=-38.64d0
qf7: quadrupole, l=6.10d-2, g1= 38.64d0
cell, line=(drs qd7 drl qf7 drs)

The above specifies a 0.5 Amp, 6.7 MeV proton beam.
The quadrupole strength is specified by g1 (instead of the
usual k1) in T/m. The beam definition and lattice de-
scription, along with an initial distribution of macropar-
ticles, are all that is needed to perform the simulation.
For completeness, we list the following additional infor-
mation: The unnormalized rms emittances are given by
εx=εy=1 × 10−6m-rad. The matched rms parameters at
0.5 amp are xrms = yrms = 0.859 × 10−3m, px,rms =
py,rms = 3.10 × 10−3, (xpx)rms/(xrmspx,rms) =
−0.927, (ypy)rms/(yrmspy,rms) = 0.927.

Since this is a 2D test problem, the space-charge calcu-
lation is performed by applying periodic boundary condi-
tions in the longitudinal coordinate, z. The length of the
computational box in the beam frame is γβc/bfreq , where
bfreq is equal to bfreq. (This, however, is not part of the
benchmark specification; it is a parameter selected by the
user, similar to the number of grid points, number of space-
charge kicks, etc.) Figure 1 shows the output from two
codes, Synergia and MaryLie/IMPACT (ML/I), which have
been developed under a U.S. DOE SciDAC project [2]. The
initial distribution contained 100,000 particles, adjusted
to have the exact initial second moments of the matched
beam. The space-charge calculation was performed using
a 64x64x128 grid with open boundary conditions. In this
case both codes give nearly identical answers (to within
about 0.25%). This slight variation in the final answer is
due to minor differences in the implementation of the Pois-
son solver [3] and differences in the number of slices used
in the split-operator particle advance algorithm. For this
test problem, numerical inaccuracies manifest themselves,
for example, by rms mismatch and rms emittance growth.
We verified that with increasing number of macroparticles
and mesh points, the numerical emittance growth and mis-
match were reduced.
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Figure 1: ML/I and Synergia results showing the rms beam
size of a matched beam in a FODO channel

Free Expansion of a Cold Uniform Density Bunch

For this test problem, we model a cold, uniform density,
proton beam with γ = 2 expanding in free space. This test
case consists of two problems: (1) a spherical beam with
radius 2 cm, and (2) an ellipsoidal beam with semi-axes
1.5 × 2.5 × 4.5 cm. As an example, Figure 2 shows the
output for the ellipsoildal case produced by a code based on
MAD9P enhanced with three Poisson solvers: a particle-
particle solver, a particle-mesh solver, and a hierarchical
tree solver. The figure shows the fractional change of the
horizontal rms beam size from the solution computed from
the 3D envelope equations.

Figure 2: Simulation results using three different Poisson
solvers showing the deviation in horizontal beam size from
the exact solution for a cold ellipsoidal beam expanding in
free space.

Cold Beam in a FODO Channel with RF Cavities

This problem involves a cold, uniform density, 250 MeV,
100 mA proton beam in a lattice described as follows:

beam, particle=proton, ekinetic=250.d-3 &
bfreq=700.d6, bcurr=0.1d0

dr: drift, l=0.10 slices=4
fquad: quadrupole, l=0.15 g1=6.00 lfrn=0. &

tfrn=0. slices=6
dquad: quadrupole, l=0.30 g1=-6.00 lfrn=0. &

tfrn=0. slices=12
gapa1: rfgap,freq=7.e8,escale=40.e6, &

phasedeg=45.,steps=100,slices=5
gapb1: rfgap,freq=7.e8,escale=40.e6, &

phasedeg=-1,steps=100,slices=5
cell, line= &

(fquad dr gapa1 dr dquad dr gapb1 dr fquad)

For 3D bunched beam problems, the charge per bunch is
equal to bcurr/bfreq. In addition to the usual MAD
beamline elements, a new element, rfgap, is shown above.
It describes an rf cavity for which the on-axis field is given
by E(z) = E0 cos(ωt + φ). Values of the quantity E(z)
are stored in a table. In the above, phideg corresponds to
the absolute phase φ and escale corresponds to E0. For
this test problem, the tabulated values are of the function
E(z) = exp(−4x4) cos( 5π

2 tanh(5x)). The cavity fre-
quency is 700MHz. For the test problem, due to the fact
that the beam is cold, the rms equations describe the prob-
lem exacly so long as the beam remains cold and uniform.
The cavity phases have been set so that the first cavity ac-
celerates the beam and the second cavity decelerates it by
the same amount. As a result, there is a matched condition
where the final envelopes (as well as the energy) are iden-
tical to the initial values. We used a 3D envelope match-
ing code to find the 3D matched beam parameters, and we
generated a numerical realization of the matched uniform
distribution. Any deviation from periodicity in the numeri-
cal simulations is purely numerical. We have modeled this
system using the ML/I code. The matched rms envelopes
obtained from the 3D RMS envelope equations, along with
the ML/I results, are shown in Figure 2.
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Figure 3: Plot of xrms (red), yrms (green), and trms (blue,
scaled by 0.4 for plotting) versus distance in 1 period of a
FODO channel with RF cavities. ML/I results (symbols)
are on top of curves obtained from the RMS equations.
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Thermal Beam in a Constant Focusing Channel

For this problem we model a stationary solution of the
Vlasov/Poisson equations with spherical symmetry (cylin-
drical symmetry in the 2D case). For a stationary beam in
a constant focusing channel, the Hamiltonian, H, is a con-
stant of motion. In this case we choose a thermal distribu-
tion, i.e. f(�x, �p) = C exp(−H/kT ), where C and kT are
constants. Due to symmetry, the Poisson equation can be
expressed as an ordinary differential equation for the scalar
potential (suitably normalized), ψ̂, as a function of r,

d2ψ̂

dr2
+

2
r

dψ̂

dr
= − exp(

1
2kT

(α2r2 +KCψ̂)), (1)

where α describes the external focusing strength, K is the
perveance, and C is a constant that depends on the beam
current. (Note that 2/r is replaced by 1/r in the 2D case).
This equation can be solved to extremely high precision us-
ing numerical integration. The equation is integrated until

the quantity 1
r2
dψ̂
dr (or 1

r
dψ̂
dr in the 2D case) approaches a

constant, which indicates that the electric field has reached
its asymptotic free space value. This procedure results into
a set of numerical values for ψ(r), and hence the density
ρ(r), which can be tabulated and used to produce a sample
representation of the stationary distribution. Because the
distribution is stationary, any change in quantities such as
second moments, rms emittances, and density profile are
due to numerical errors. The 3D test case involves a proton
beam of kinetic energy 0.1 MeV, external focusing strength
of 2π rad/m, kT = 36× 10−6, and current I = 100 mA.

Bi-thermal Beam, Constant Focusing Channel

A key feature in the previous example is that, due to sym-
metry, the Poisson equation was reduced to an ordinary
(not partial) differential equation, which could be solved
to extremely high accuracy in order to provide an ”exact”
solution . Unfortunately, the previous example exhibits
very ”simple” charge densities (varying from Gaussian at
zero current to almost uniform in the extreme space-charge
limit). This is not ideal for benchmarking, because often
particle simulations are used to study beam halos. It is
therefore very desirable to have a benchmark that exhibits
a pronounced halo. This can be accomplished using an al-
most identical technique, except that we (self-consistently)
superpose two distributions with different temperatures. In
other words, the beam distribution function is taken to be a
spherically symmetric distribution of the form f(�x, �p) =
C1 exp(−H/kT1) + C2 exp(−H/kT2), where C1, C2,
kT1, and kT2 are constants. If we solve for the scalar po-
tential of the first beam by viewing the second beam as pro-
viding an “external” field, and vice-versa, the result is that
the problem is reduced to solving two coupled ordinary dif-
ferential equations, one for ψ1 and the other for ψ2. For
the test problem we model a 0.1 MeV proton beam with
kT1 = 36 × 10−6, kT2 = 900 × 10−6, I1 = 99 mA,
I2 = 1 mA. Figure 3 shows a plot of the exact density
along with simulated density after 10 focusing lengths.
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Figure 4: Beam density versus radius for a stationary, high-
intensity bi-thermal distribution. The data are plotted on a
linear scale (left axis, inner curve) and log scale (right axis,
outer curve). The solid lines show the analytical solution
as described in the text. The data points (circles, log scale)
show the distribution after 10 focusing lengths, simulated
using ML/I with 100 million particles. The halo is well-
resolved out to a distance where the radial density is one
million times smaller than the central density.

FUTURE DIRECTIONS

We have presented several examples that represent a
starting point for a suite of problems to test and benchmark
space-charge simulation codes. Web sites are being set up
to contain the lattice descriptions and particle data sets so
that users around the world can run identical problems and
compare results. Because the data sets are large, two iden-
tical sites are being set up, one to be maintained by NERSC
in the USA and one to be maintained by PSI in Europe.

So far we have made comparisons of quantities such as
rms beam size and rms emittance. In the future we intend
to make precision comparisons using quantities such as the
99.99% values of 2nd moments, which are much more de-
manding than rms quantities. Also, it would be very useful
to have a test problem that includes not only a halo, but also
a slow variation in parameters [4]; this would be the case,
for example, for a beam undergoing slow synchrotron os-
cillations. It is unlikely that such a test case will be found
for which the solution can be obtained analytically or semi-
numerically. Instead, such a problem will likely be solved
using very high resolution particle simulation, and that will
form the basis of another test case in the suite of codes.
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