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Abstract
When a proton bunch passes through an electron cloud,

the cloud electrons are attracted by the beam electric field
and their density strongly increases near the beam centre.
This gives rise to an incoherent proton tune shift, which
depends on the longitudinal and radial position within the
bunch. We present an analytical description of the ’electron
pinch’ and the resulting proton tune shift for a circular sym-
metry and a Gaussian cloud, considering a linear transverse
force and various longitudinal beam profiles. Benchmark-
ing and extending the results by computer simulations, we
can also explore the effects of a non-linear transverse force.

INTRODUCTION
During the passage of a proton (or positron) bunch

through an electron cloud, the electrons are accumulated
around the beam center. This pinch effect produces an
incoherent tune shift and a tune spread in the bunch that
could cause a slow emittance growth over successive turns.
We compute the electron-cloud density evolution during a
bunch passage and from this we infer the tune shift of indi-
vidual beam particles, for a cylindrically symmetric model.

We first solve the equations of motion of a single elec-
tron in the bunch potential under the simplifying approx-
imation of a linear transverse force. Next, assuming an
initially Gaussian electron distribution of finite tempera-
ture in transverse phase space, we compute the evolution
of the electron density during the bunch passage, using Li-
ouville’s theorem. Finally, from the electron distribution,
we calculate the tune shift experienced by individual pro-
tons as a function of their transverse and longitudinal posi-
tion. An explicit analytical solution is derived for an arbi-
trary longitudinal profile, under the assumption of a linear
transverse force. Approximations for low electron temper-
ature are discussed. In the second part of this paper we
employ a computer simulation to extend the analysis to a
non-linear transverse force for a Gaussian transverse beam
profile. From the simulation result, we estimate the inco-
herent tune spread in the LHC at injection.

ELECTRON DENSITY EVOLUTION,
APPROXIMATION OF LINEAR FORCE
We start from the electron distribution in the four-

dimensional transverse phase space. In the linear force
approximation, the horizontal and vertical planes are un-
coupled. We thus factorize the electron density distribution
and the spatial density as follows:

ρ(x, ẋ, y, ẏ, t) = ρx(x, ẋ, t) ρy(y, ẏ, t) (1)

ne(r, t) ≡ ne(x, y, t) = nx(x, t) ny(y, t) (2)
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where the projected spatial densities are obtained by inte-
grating the projected phase-space densities over the elec-
tron velocities:

nx(x, t) =
∫

dẋρx(x, ẋ, t) . (3)

By our symmetry assumption ne depends on x and y only
in terms of the radius r ≡

√
x2 + y2.

From Liouville’s theorem, we know that the electron
density in the phase space is locally preserved. Hence, with
the hypothesis of an initially Gaussian distribution for the
electrons in their transverse phase space, we can write for
the horizontal distribution

ρx(x, ẋ, t) = ρx(x0, ẋ0, 0) =
√

λe

2πσ0σ̇0
e
− x2

0
2σ2

0 e
− ẋ2

0
2σ̇2

0 ,

(4)
Here, the parameters σ0 and σ̇0 denote the horizontal rms
size of the initial electron distribution and its horizontal rms
velocity, respectively. For the circularly symmetric prob-
lem that we consider here, the vertical density has the same
form with identical rms size and velocity. We will later
obtain some approximate compact expressions for the spe-
cial case that the initial velocities of the electrons are small
compared with the (correlated) velocities acquired in the
beam potential, i.e. σ̇0 � ωeσ0.

If we are able to solve and invert the equation of motion
of a single electron in the bunch potential, we can express
(x0, ẋ0) as a function of (x, ẋ, t) and insert the resulting
expressions on the right-hand side of (4) in order to obtain
the electron density at the time t 1.

Approximation of Linear Force
Under the linear approximation (strictly valid for r �

σr) the motion of an electron in the bunch potential is de-
coupled for the two transverse planes. The equation in the
horizontal plane (a similar expression holds for the vertical)
is [2]:

ẍ + ω2
e(t)x = 0 (5)

where:
ω2

e(t) = λb(t)rec
2/σ2

r , (6)

c is the velocity of light, re ≡ e2/(4πε0mec
2) is the classi-

cal electron radius, σr is the transverse beam size (namely
σr = σx = σy) and λb(t) is the beam longitudinal profile
as a function of time t = (nσz − z)/c. We define t = 0 as
the moment when the bunch enters the cloud (we will use
n = 3) and z is the longitudinal distance from the bunch
center.

With the linear approximation, it is possible to solve the
equation of motion (5) and invert the solution, yielding

1A similar method was used in [1] to compute the beam density evo-
lution under the influence of nonlinear field errors.
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(x0, ẋ0) as a function of (x, ẋ) in the form:

x0 = a(t)x + b(t)ẋ (7)

ẋ0 = c(t)x + d(t)ẋ ,

where the coefficients a(t),...,d(t) depend on the longitudi-
nal distribution and for a conservative system (ad− bc) =
1. The electron distribution in phase space is computed by
inserting (7) into (4) and the spatial electron density evo-
lution is obtained by integrating the distribution function
over the velocities as in (3).

Tune Shift
From the electron density, we can compute the electric

field acting on the protons of the bunch (see again [2] for
details) and the incoherent tune shift induced on the beam
over one turn around the ring. The tune shift in the hori-
zontal plane is given by

∆Qx =
1
4π

∮
C

ds β(s)∆kx (8)

∆kx = − e

γmpc2

∂Ẽe,x(r, z)
∂x

, (9)

where Ẽe,x(r, z) is the field experienced by a proton at po-
sition (r, z), and is equal to:

∆Qx(r, z) = (10)∮
C

ds β(s)
rp

γ

[
ñe(r, z)− 1

r2

∫
ñe(r′, z)r′dr′

]
.

In principle, the proton beam size depends on the beta func-
tions and, thus, also the electron density ñe(r, z) depends
on the position around the ring s. In the following we will
use the smooth focusing approximation, (i.e. β(s) = β̄ =
const) and we also assume a constant electron-cloud den-
sity, so that the integrand becomes independent of s.

We now derive the tune shift for two specific longitudinal
bunch profiles and for the general case.

Uniform Bunch Profile
In the case of λb(t) = λb = const the equation of mo-

tion reduces to the harmonic oscillator, whose solution can
be written in terms of C = cos(ωet) and S = sin(ωet) The
tune shift (8) for a particle at position r and z in the bunch
is

∆Qx(r, z) ≈ β̄Lλerp

4πγC2σ2
0

1

1 + S2σ̇2
0

C2ω2
eσ2

0[
1− ω2

er2

2(C2ω2
eσ2

0 + S2σ̇2
0)

+ O
(
(ωer)4

)]

where L is the circumference of the ring and the smooth
focusing assumption has been invoked. The tune shift de-
pends on the longitudinal position with respect to the bunch
center and it decreases parabolically with transverse dis-
tance r. We note that for σ̇0 � σ0ωe, the tune shift
becomes maximum at periodic intervals along the bunch,
when C = 0.

Arbitrary Longitudinal Profile
If the longitudinal distribution of the beam, λb(t),

is not a constant, but the change is adiabatic so that:
|3ω̇e/2ωe| , |ω̈e/ω̇e| � 2ωe , we can apply the WKB ap-
proximation [3]. Then the general solution, dropping small
terms, is

x(t) =
c1√
ωe(t)

cosS(t) +
c2√
ωe(t)

sin S(t) (11)

S(t) =
∫ t

0

ωe(t) dt (12)

where c1 and c2 are determined from the initial conditions
x0 and ẋ0. In this general case – but as before for a linear
transverse force –, we can still invert the solution and de-
termine (x0, ẋ0) as a function of (x, ẋ), as in Eq.(7), and
insert the result into the expression of the electron distribu-
tion in phase space (4). The density ne(r, t) obtained by
integrating over the velocities becomes

ne(r, t) =
λe

2πD(t)
e−

r2
2D(t) (13)

with
D(t) = d(t)2σ2

0 + b(t)2σ̇2
0 (14)

which depends on the longitudinal profile of the bunch.
Again assuming the smooth focusing approximation, the

tune shift in the horizontal or vertical plane has the general
form:

∆Qx,y(r, z) =
λerpβ̄L

2πγ r2

(
1− e−

r2
2D

(
r2 + D

)
D

)
. (15)

Expanding and keeping only the lowest-order terms in
r2/D, this simplifies to

∆Qx(r, z) ≈ β̄Lλerp

4πγD

(
1− 3

4
r2

D

)
(16)

Gaussian Longitudinal Profile
In the case of a bunch with a Gaussian longitudinal shape

λ̃b(z) =
Nb√
2πσz

e
− z2

2σ2
z ; z ∈ (−∞, +∞) (17)

we have:

ωe(t) = Ω e
− (nσz−ct)2

4σ2
z

S(t) = Ω
σz
√

π

c

{
Erf

(n

2

)
+ Erf

[
1
2

(
ct

σz
− n

)]}

Ω =

√
reNbc2

σ2
rσz

√
2π

.

The coefficients b and d in (14) are

b(t) = −e

(
n2
4 + z̃2

8 −n z̃
4

) 1
Ω

sinS(t)

d(t) = e

(
z̃2
8 −n

4 z̃
)

cosS(t)

+e

(
n2
4 + z̃2

8 −n z̃
4

)
n

4σr

c

Ω
sin S(t)
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with z̃ = ct/σz .

The tune shift at the start of the bunch (z̃ = 0) is

∆Qx(r, z) ≈ β̄C̃λerp

4πγσ2
0

, (18)

as expected for the unperturbed initial cloud density [4].

EXTENSION TO NON-LINEAR
TRANSVERSE FORCE

Via a simple tracking code, we extended the analysis to
electrons moving in the potential of a transverse Gaussian
beam. For the simulations we took the parametres for LHC
at injection, listed in Table 1.

Table 1: Parameters used in the simulations for LHC at
injection

electron cloud density ρe 6× 1011 m−3

bunch population Nb 1.1× 1011

rms bunch length σz 0.115 m
rms beam size σb 0.884 mm
nominal tunes Qx,y 64.28, 59.31
electron cloud size σ0 10 σb

electron initial velocity σ̇0 ωeσ0/100

The top row of Fig. 1 shows the electron density evolu-
tion at the centre of the pipe, during the passage of a bunch,
computed with the linear force approximation (left) and for
the Gaussian beam profile (right). The simulation with the
linear force acting on the electrons is consistent with the
analytical prediction (dotted green line). The small shift in
the position of the peaks depends on the initial condition
and the slicing in our simulation. On the other hand, if the
electrons move in the potential of a transversely Gaussian
beam, the modulation almost disappears after a quarter os-
cillation, from when on the density stays about constant.
In the case of the non-linear force, in fact, the electrons do
not reach the centre of the bunch simultaneously, but their
oscillation frequency depends on the initial amplitude. The
bottom row displays snapshots of the radial distribution of
the electrons at different times during the bunch passage
both for the linear force approximation and for the Gaus-
sian potential.

As can be seen in Fig. 1 the density enhancement at the
center of the bunch, for a Gaussian transverse beam dis-
tribution, is about a factor 50. This allows us to roughly
estimate the tune spread via

∆Q ≈ β̄C̃rp

2γ
ne , (19)

where ne denotes the enhanced electron density. For the
example of the LHC, this gives the value ∆Q ≈ 0.13, if the
initial unperturbed electron cloud density is 6× 1011 m−3.
A frequency map analysis [5] from HEADTAIL simula-
tions [6] in a frozen-field approximation gave a tune spread
of ≈ 0.05 at z = +2σz . This tune spread corresponds to
a density enhancement of a factor 20 [7], in nearly perfect
agreement with the value at +2σz in the top right picture
of Fig. 1.

Figure 1: Top: Electron density vs. time at the centre of the
pipe, during the passage of a bunch. In red the simulated
density evolution and dotted in green the analytical results.
Bottom: Snap shots of radial distribution (ρ × r) at 4 dif-
ferent times during the bunch passage. The pictures are
obtained assuming a linear transverse force (left) and for a
Gaussian transverse beam distribution (right). A Gaussian
bunch profile is assumed in z.

SUMMARY
We presented an analytical approach to compute the in-

oherent tune shift caused by the electron pinch during the
passage of a bunch through the electron cloud. An expres-
sion for the electron density evolution was derived for any
longitudinal bunch profile, a linear transverse force, and
circular symmetry. From the pinched electron distribution,
the incoherent tune shift has been computed as a function
of the radial and longitudinal position inside the bunch.

Via a simple tracking code, we extended this study to
electrons moving in the nonlinear field of a beam with
Gaussian transverse profile. In this case, the electrons do
not reach the centre of the bunch simultaneously, and after
a quarter oscillation the density at the center of the bunch
stays roughly constant. It is easy to estimate the tune shift
from the value of this stationary density enhancement.
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