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Abstract

Lie algebra tools coded directly in Mathematica have
been used to compute the off-momentum closed orbit,
compaction and tune of Fixed Field Alternating Gradient
(FFAG) lattices proposed for muon acceleration. The sam-
ple FFAG cell considered consists of quadrupoles and al-
ternating gradient magnets. A high order Taylor map is
needed, valid over a wide momentum range. We describe
the algorithm and Mathematica operators used to create and
concatenate individual element maps (presented as Lie ex-
ponential operators) and compare our results with those ob-
tained with a high-order differential algebra code – COSY.
The speed achieved is inferior to the differential algebra
method.

INTRODUCTION

In large rings of relatively small momentum acceptance,
it is an excellent approximation to ignore the nonlinear
dipole contributions. A typical FFAG lattice however con-
tains combined function dipoles of small bending radii and
is moreover designed for a very large range of momentum
deviations (∼ 50%). High-order terms in the bend Hamil-
tonian become in this case important [2] – both geometric
(arising from the magnetic field expansion, deliberate or
inadvertent) and kinematic.

We describe the Lie-algebraic procedure implemented in
Mathematica language [9] which, for an arbitrary sequence
of elements with predefined Hamiltonians builds numeri-
cally the 4-D Taylor map in variables (x, px, τ, pτ ). For an
FFAG cell composed of combined function elements and
drifts, we have computed the off-energy closed orbit, orbit
path length and horizontal tune. These are compared with
the ones found with COSY infinity [3].

Advantages of using Mathematica (similar tools have al-
ready been reported in [8]) are the modular structure and
flexibility; the effect of different nonlinear Hamiltonian
terms on the map can easily be separated and even ana-
lytical dependence on parameters may be obtained for low
order maps (not reported here). An important drawback is
the large computing time. For example, building the 7-th
order numerical map of the FFAG cell required 1000 CPU
seconds on 1 GHz processor.

The Hamiltonian

The Taylor maps discussed here transform vector of
canonical coordinates X = (x, px, τ, pτ ) – deviations from
the reference (design) orbit corresponding to momentum
p0 = eB0ρ0 and with local curvature h(s) = 1/ρ0(s). We
restrict our analysis to a motion in the horizontal plane. We

also take the simplest case of field expansion in combined-
function bends and quadrupoles – the vertical magnetic
field component By changes in radial direction linearly
to second order in x. In what follows, we only keep the
Hamiltonian terms corresponding to such a linear change.

In the curvilinear coordinate system, the infinite ([2],
[3]) expansion of the longitudinal vector potential associ-
ated with field By , and the field itself are [4]:
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h = 0, while for a drift h = k1 = 0. The motion is
governed by a Hamiltonian (the time-like variable is the
design path-length s and the momenta are scaled by p0):
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where β0 is the reference particle velocity/(speed of light).
Consider a single combined-function bend. Keeping

the first three geometric terms in (2) – a dipole kick,
quadrupole focusing and sextupole assures that the radius
of the orbit scales with particle momentum. Indeed, due
to the rotational symmetry all closed orbits are circular and
hence parallel to the reference one. One of the equations of
motion taken with the above constraint gives:

p′x = −∂H
∂x
| px=0 = 0 ⇒

h2x− k1x− hk1x
2 − hδ = 0 ⇔

e(B0 +
n0B0

ρ0
x)(ρ0 + x) = p0(1 + δ).

(3)

(′) denotes derivative w.r.t. s. The off-momentum closed
closed is an arc of a circle of radius ρ0 +x, at which radius
the magnetic field is B0 + n0B0/ρ0x.

As to the kinematic part, in a small ring the term
xp2

x/ρ0/(1+ δ) cannot be ignored since it affects the chro-
maticity [2],[13]. By expanding the square root in px and
δ, we will keep the resultant kinematic terms to order N+1,
where N denotes the order of the final map.
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CONSTRUCTION OF THE MAP

Lie algebraic tools in Mathematica

We define three Mathematica functions operating on
polynomials: the Poisson bracket (PB), the Baker-Cambell-
Hausdorf formula of third (BCH3), or fourth (BCH4) order,
the exponential series defining the Lie transform (LieExp)
and the module GetRmat.

H = PB[F, G] ⇔ h = : f : g ≡ [f, g] ;

H = BCH3[F, G]⇔ h = f + g +
1
2

[f, g] + . . .

(e:f :e:g: = e:h:);

H = LieExp[F, G]⇔ h = g + [f, g] +
1
2!

[f, [f, g]] + ...

(h = e:f :g);

R =GetRmat[f (2)]⇔ e:f(2): ↔ R .

The order of the BCH operator is fixed, hence to avoid
meaningless operations on higher-order terms, at each BCH
call the resultant polynomial generator H is truncated above
orders N + 1. The operator LieExp is called only once re-
taining terms of order N . In case when BCH3 is used (three
Poisson Brackets), the generators are accurate to order six
and the map elements are accurate to X5

i .
The module GetRmat computes R – the 4x4 transport

matrix corresponding to a linear generator f (2). It employs
MatrixExp, thus we avoid coding explicitly the Hamilton-
Cayley theorem [1],[7]. Other (standard) Mathematica op-
erations are: Series, Chop, Coefficient, FindRoot and
Timing.

Algorithm of LieMath

The Lie algebraic theory prescribing how to extract the
truncated Taylor map from lattice representation is outlined
in [1], [5],[6], [7] and many other papers. Notice that for
our FFAG problem the drift has to be taken as a nonlinear
element [1],[13].

Denote by Ln the length and by Hn(X) the Hamiltonian
of the n-th element (n = 1 . . . Nele). The beam-line map
we seek to find can be written as a chain product of thick-
element factor maps (earlier elements appear on the left and
all fn are functions of the same variables X):

:M : =
Nele∏∏∏
n=1

e:fn(X):; fn(X) = −LnHn(X). (4)

The map can be further transformed into a product of linear
transforms analytically represented as matrices (GetRmat)
and nonlinear Lie operators (kicks). To do this, we choose
the factorization e:fn: = e:fkick

n :ef(2)
n , which can be seen as

an equivalent thin kick e:fkick
n : = e:fn:e−f(2)

n applied at the
entrance of the n-th element followed by a linear operator.
The factor fkick

n contains orders 3 and higher. Next, by
using a sequence of similarity transformations, all linear
operators can be commuted to the right. Each commutation

linearly transforms the argument of fkick
n , so factors of the

kind fkick
n (R̃n.X) appear, where R̃n =

∏∏∏
k Rk is the R-

matrix from the line entrance to the n-th kick and Rtot =
R̃N is the total matrix, with corresponding generator f

(2)
tot .

The kicks are combined (BCH applied in a loop) into one
concatenated kick with generator Fconc:

:M : =
Nele∏∏∏
n=1

e:fkick
n (R̃n.X):Rtot = e:Fconc:Rtot . (5)

One finally applies LieExp to express final coordinates in
terms of the initial ones:

Xf = :M : X|X=X0 = e:Fconc:(Rtot.X)|X=X0 .

X0=initial vector; Xf =final vector.
(6)

Alternatively, in LieMath the map is represented with one
grand exponent:

:M : = e:Fgr:, where Fgr = BCH(Fconc., f
(2)
tot ).

Closed orbit, orbit path length, tune

The Hamiltonian (2) is τ -independent, hence one of the
Equations (6) is simply pτf = pτ0 which allows us to
choose pτ0 (or δ0) as a parameter. The other equations give
three functions xf , px,f , τf as N-th order polynomials in
the remaining three components of X0 (different from τ0).
The off-momentum closed orbit (equal initial and final x
and px) is found by solving numerically the system:

xco = xf (xco, pco
x , pτ0)

pco
x = pxf (xco, pco

x , pτ0)
(7)

The result (xco, pco
x ) is substituted in the τf –polynomial to

find the increase in orbit length: β0cτf (xco, pco
x , pτ0). The

tune is extracted from the trace of the Jacobian matrix, i.e.
the linearized map in the vicinity of the new orbit.

The same closed orbit may also be found by solving the
system (first substitute τ = 0, pτ = pτ0 in Fgr):

[Fgr, x] = 0; [Fgr, px] = 0. (8)

Within the truncation error of the Taylor series the above
two methods produce identical orbits. The second method
avoids the use of LieExp, thus saving computing time.

APPLICATION TO FFAG

Lattice: In our FFAG example [10] the particle is a
muon and the reference momentum is p0 = 19.889 GeV/c
(rigidity B ρ0 = 66.3426 T.m). The cell struc-
ture is: (Q-D-B-D-Q), where Q is a quadrupole (length
L = 0.2379 m, gradient 34.096 T/m (k1 =
0.513939 m−2); D is a drift (length L = 1.75m); B is a
combined sector bend (L = 0.723 m, angle 2π

141 radians
and a field gradient 22.757 T/m).
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Results

Despite of the neglected higher-order geometric terms
(≥ 4), a good agreement is observed between the result
generated by Mathematica and COSY.

When using the third-order BCH formula, Figure 1 com-
pares the δ-dependent closed orbit, orbit path length and
tune. As the order N increases (expansion of the square root
in (2)) the LieMath results approach those found with the
8-th order COSY map. For the closed orbit (Fig. 1, top) the

7

6

8

45

Figure 1: LieMath results (BCH3) compared with those
found with COSY 8-th order map [12]

maximum deviation is approximately 2.3 mm (the zoomed
area in Fig. 1). Further increase of the order N does not
improve this result. Figure 2 demonstrates that applying
BHC4 (four nested brackets) allows to decrease the differ-
ence in closed orbits ∆xc.o. to around 1.4 mm.

We have not attempted to apply separation of orders [5]
and present the individual element maps in factored prod-

Figure 2: Difference between the closed orbit found with
COSY and LieMath with map order N = 5,6,7.

uct form [6]. While it is likely that the capabilities of Math-
ematica to operate on polynomials have not been fully ex-
plored here, it should be emphasized that the above method
cannot compete in speed with well established codes.

Extending the above algorithm into 6D space is straight-
forward. For this, one needs to add the pair y, py to the
components of coordinate vector X and include the corre-
sponding derivatives in the definition of Poisson bracket.
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