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Abstract

Working point scans at RHIC were performed during
2004 to determine the effect on lifetime and luminosity.
Linear optics were measured for different working point
tunes by exciting coherent oscillations with the aid of RHIC
AC dipoles. Two methods are currently used to measure
the beta functions and phases advances: a conventional fit-
ting technique, and an alternate method based on singular
value decomposition (SVD). This paper focuses on the ef-
fect of working point on the measurement of linear optics
using a SVD based technique. The use of a 3-bump beta
wave algorithm to identify quadrupole error sources is also
presented.

INTRODUCTION

A working point (tune) scan was performed at RHIC as
a part of beam experiments to investigate the effect of life-
time and luminosity in run 2004 with Au-Au collisions [1].
For the PP 2004 run, tunes (Q) ∼ 0.72 were chosen to be
the new working point as a result of the previous study
to improve polarization, luminosity and lifetime. RHIC
is equipped with two AC dipoles capable of adiabatically
exciting coherent betatron oscillations in both transverse
planes, when driven close to the betatron tune, given by

x(s) =
BdL

4πBρδ

√
β(s)β0 sin (2πQxt+ ψ(s)) (1)

where BdL is the integrated AC dipole strength, Bρ is the
magnetic rigidity, β(s) and β0 are beta functions at the s
and at the AC dipole respectively, δ is the tune separa-
tion between drive and intrinsic tune Qx and ψ(s) is the
phase advance at location s. Turn-by-turn data acquired
using beam position monitors (BPMs) is routinely used to
compute linear optics at RHIC using coherent oscillations
driven by the AC dipole. Linear optics were measured dur-
ing these scans to understand the effects of tune on optics.
Two techniques are currently used to determine Twiss pa-
rameters (phase advances, beta functions). We focus on the
SVD based technique to measure linear optics crucial for
machine operation and development of an accurate model.

SVD Technique

A model independent technique using SVD has been re-
cently demonstrated to be accurate and robust [2, 3] in mea-
suring linear optics using BPM data. SVD decomposition
of a BPM data matrix consisting of turn-by-turn data (with
closed orbit removed) from many BPMs is useful in the
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determination of dominant physical patterns of the beam
motion. In the presence of coherent betatron oscillations
with small coupling, SVD decomposes the BPM matrix in
two leading spatio-temporal eigenmodes representing the
betatron modes. This decomposition can be analytically
derived by solving the secular equation of the variance-
covariance matrix CB = BTB. The normalized temporal
(u±) and spatial (v±) vectors are given by [3]

v+ =
1

√
λ+

[√
〈J〉βm cos (φ0 + ψm)

]
(2)

v− =
1

√
λ−

[√
〈J〉βm sin (φ0 + ψm)

]
(3)

u+ =

√
2Jt
T 〈J〉 cos (φt − φ0) (4)

u− = −
√

2Jt
T 〈J〉 sin (φt − φ0) (5)

where Jt and φt are the action angle variable, βm and ψm
are the beta function and phase advance at the mth BPM,
λ± are the square roots of the singular values σ±, and t is
the number of turns. The Twiss functions can be derived
from the spatial vectors given by

ψ = tan−1

(
σ−v−
σ+v+

)
(6)

β = 〈J〉−1(λ+v
2
+ + λ−v2

−) (7)

Only the scaling factor 〈J〉 has to be determined from the
model. The error bounds for the Twiss parameters are given
by

σψ ≈ 1√
T

σr
σs
, σ∆β

β
≈ 2σψ (8)

MEASUREMENTS

Limitations in measuring Twiss functions are mainly re-
lated to the quality and availability of reliable BPM data.
Performance of RHIC BPMs has been studied in detail and
it was found that significant number of BPMs exhibit fail-
ures related to radiation, electronics and low level software
issues [4]. These BPMs are removed before the Twiss pa-
rameters are calculated. It was also found that a few BPMs
show turn mismatch due to timing problems in the elec-
tronics which are corrected in this analysis. Figs. 1 and
2 show a comparison between model and measured Twiss
functions for Au-Au injection (γ = 10.52) and PP injec-
tion (γ = 25.94). The rms of the phase advance difference,
(ψmodelm − ψmeasuredm ) and the rms of percent difference
in β function, (βmodelm − βmeasm )/βmodel were calculated
to understand the sensitivity of optics measurements to the
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Figure 1: Phase advance and beta function for Au-Au injection optics using AC dipole.

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0  0.5  1  1.5  2  2.5  3  3.5

β y
 (

m
)

model
svd

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0  0.5  1  1.5  2  2.5  3  3.5

β x
 (

m
)

model
svd

0

π

2π

 0  0.5  1  1.5  2  2.5  3  3.5

ψ
y

model
svd

0

π

2π

 0  0.5  1  1.5  2  2.5  3  3.5
ψ

x

model
svd

Longitudinal Position (km) Longitudinal Position (km)

Figure 2: Phase advance and beta function for PP Injection optics using AC dipole.

working point and β∗. Some measurements show large de-
viation from the model mainly due to BPM failures. Data
files with very large deviation are not included in this anal-
ysis. The measurement for Yellow and Blue ring were not
separated because we assume that the instrumentation in
both rings are similar.

Tables 1 and 2 show a detailed list of rms differences
for the different working points at injection and store. One
has to note that the model tunes are not exactly matched to
measured tunes [5]. Fig. 3 shows a plot of average values
and their standard deviations of (∆β/β)rms and ∆ψrms

only for Au-Au and PP injection and store conditions. The
other working points are not plotted because of large sys-
tematic errors. It is clear from Fig. 3 that deviation from the
mean values are large mainly due to systematic errors. A
number of systematic measurements and improvements in
BPM reliability will reduce these deviations significantly.
One can notice that the rms phase advance difference for
Q ∼ 0.2 region appears to be slightly better than Q ∼ 0.7
region. One can also notice that for Q ∼ 0.2 region, the
(∆β/β)rms is smaller for injection optics (β∗ = 10m)
than store optics (β∗ = 1m) as expected. However, the
region near Q ∼ 0.7 shows contrary results which needs

to be verified. A large number of statistics are needed to
arrive at a definitive conclusion.
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Figure 3: (ψmodel−ψmeas)rms and (∆β/β)rms for work-
ing points Au-Au and PP injection and store.
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Table 1: Working point Optics at Injection(γAu − 10.52,
γpp − 25.94). β∗ @ 6 IPs (10,10,10,10,10,10) [m]. NE -
Not Estimated due to excitation of AC dipole in only one
plane or large systematic errors.

Ring Qx Qy ∆ψrmsx
∆βx

βx

rms
∆ψrmsy

∆βy

βx

rms

RHIC Au-Au
B 0.237 0.222 11.9 8 % NE NE
B 0.237 0.222 11.31 7 % 9.4 12 %
Y 0.21 0.22 10.9 NE 10.4 14 %
B 0.238 0.20 6.7 10 % 8.27 8 %
B 0.238 0.20 5.9 11 % 8.6 18 %
Y 0.219 0.232 2.5 5 % 8.6 17 %
B 0.238 0.224 11.46 7 % 10.1 23 %
B 0.238 0.224 NE NE 7.5 8 %

RHIC PP
Y 0.723 0.720 8.19 12 % 14 25 %
Y 0.723 0.720 8.3 13 % 13 NE
Y 0.723 0.720 8.36 16 % 13 NE

RHIC Design (Au-Au)
Y 0.168 0.182 16.1 48 % 9.57 NE
Y 0.168 0.182 4.79 33 % NE NE
Y 0.201 0.187 2.13 19 % 9.8 32 %
Y 0.201 0.187 15.4 39 % 6.5 12 %

ISR (Au-Au)
B 0.1025 0.11 10.9 13 % 22.3 52 %
B 0.1025 0.11 NE NE 22.4 31 %
B 0.1025 0.11 NE NE 15 8 %

SPS (Au-Au)
B 0.705 0.695 13.3 25 % 20.07 39 %
B 0.705 0.695 17.0 23 % 17.7 36 %
B 0.705 0.695 NE NE 14.5 9 %
B 0.705 0.695 NE NE 12.3 9 %

Table 2: Working Point Optics at Store.
Ring Qx Qy ∆ψrmsx

∆βx

βx

rms
∆ψrmsy

∆βy

βx

rms

RHIC Au-Au
β∗(3,5,1,1,3,5) [m], γ − 107.76

B 0.231 0.223 10.3 12 % 8.0 11 %
B 0.231 0.223 10.7 13 % 7.0 11 %
B 0.231 0.223 10.0 13 % 11.2 12 %
B 0.231 0.223 11.9 12 % 11.9 15 %

RHIC PP
β∗(3,10,2,2,3,10) [m], γ − 106.58

Y 0.728 0.722 10.8 12 % 10.7 11 %
Y 0.728 0.722 10.9 12 % 11.93 6 %
Y 0.728 0.722 11.19 12 % 12.36 5 %

ERROR SOURCE IDENTIFICATION

The close analogy between trajectory and beta wave
perturbations indicates a close connection between the
problems of closed orbit correction and quadrupole error
source identification. A thin horizontal focusing error of
∆q [m−1] causes a horizontal perturbation wave that prop-
agates downstream to first order in ∆q like

∆β
β

≈ −∆q β0 sin(2(φ− φ0)) (9)

where β0 is the design horizontal beta function at the
quadrupole error source. Just as 3 dipole correctors can be
powered to create a closed orbit “three-bump”, so also can
3 quadrupoles create a local beta-bump – if their strengths
(Left, Right, and Center) are

∆qL = −∆βC
βC

1
βL

1
sin(2φCL)

∆qC = +
∆βC
βC

1
βC

sin(2φRL)
sin(2φRC) sin(2φCL)

(10)

∆qR = −∆βC
βC

1
βR

1
sin(2φRC)

and where, for example,

∆φCL = φCenter − φLeft (11)

This beta-bump is not closed in the other (vertical) plane.
The “sliding 3-bump” algorithm is often used in closed
orbit correction applications, taking as input a vector of
closed orbit displacements measured at many beam posi-
tion monitors, and generating as output a vector of sug-
gested dipole corrector adjustments. The algorithm is read-
ily modified to take a measured ∆β/β vector as input,
generating a suggested quadrupole correction vector (with
elements at every lattice quadrupole) as output. It is of-
ten more practical to interpret this output vector as a set
of quadrupole error sources, especially if the quadrupoles
are powered as families (as in RHIC). If independent hor-
izontal and vertical optics error measurements are avail-
able, then both measurements should identify the same
quadrupole error sources. An off-line code qlawb is under
testing, to automate source identification in this fashion.

SUMMARY

The measurement of linear optics using AC dipole was
demonstrated reliably in Run 2003-4. Optics were mea-
sured for different working point tunes and a detailed com-
parison for each working point was done to understand the
effect of tune. Although the region near Q ∼ 0.2 shows
slightly better results than the region near Q ∼ 0.7, no sig-
nificant difference was found between the working points.
The effect of β∗ is consistent for data near Q ∼ 0.2 re-
gion. The region near Q ∼ 0.7 needs to be revisited and
more systematic studies will help develop a more accurate
model.
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