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Abstract 

This paper describes measurable quantities of beams 
preserved under symplectic transformations. General 
beam distributions have no determined area, and rms 
quantities of the beam do not provide invariants in the 
general nonlinear case. Here we show that in the 1D case 
there exist integral and local invariants, directly linked to 
Liouville�s theorem. Beam invariants, related to general 
properties of symplectic transformations, are also found 
and presented for 2D and  3D cases. If measured at 
different locations, these invariants can tell whether the 
transformation is symplectic, or there exist diffusion, 
friction, or other non-Hamiltonian dynamic processes in 
the beam. 

INTRODUCTION 
The Hamiltonian dynamics and associated symplectic 

transformations are a very well developed subject. For 
diagnostics purposes, however, all the results from 
symplectic geometry are hardly applicable. The reason is 
that the beam consists typically of identical particles and 
it is very hard to know which part of the beam is 
transformed into any particular spot, especially when the 
dynamics are governed by a space charge force that 
depends on the measured distribution. All we have is 
projections of the beam distribution at various points. 
Under typical circumstances many initial conditions will 
produce identical measured beam profiles.  For example, 
in LEDA beam experiments [1], intense beam profiles 
were measured at several locations and there was a 
possibility to find initial distributions that reproduce the 
measured beam profiles for various sets of quadrupoles. 
The question is: Are there any beam characteristics, 
which don�t depend on initial conditions? It turns out that 
if the dynamics of particles are determined by external 
and space charge forces, it is possible to find distribution 
properties which are preserved during beam transport. 
What first comes to mind is the Liouville�s theorem of 
phase volume preservation, but fact is that for arbitrary 
distributions there is no such thing as volume. The rms 
quantities can be used for invariants only when the 
transport is linear (the invariants of linear motion for rms 
quantities were obtained in [2]). Regardless, for some 
smooth distributions there exist possibility to determine 
whether two measured distributions are related by a 
symplectic transformation. We present full solution to the 
problem for the 1D case in Section II. Solution for the 
beam core to the 2D and 3D cases is presented in Section 
III, and a practical device to measure the invariants in 
Section IV. Conclusion summarizes the results.      

 

 1D INVARIANTS 
We begin with 1D motion and its 2D phase space. 

Figure 1 presents two different distributions (left and right 
on top) and their topological views. How can we tell if 
these two distributions are symplectically equivalent (i.e., 
can be transformed one to another by a symplectic map)? 
Let�s take the lines in topological graphs, along which the 
particle�s density is constant.  Because the phase space 
density behaves as an uncompressible liquid, a line of 
constant density is transformed by a symplectic map to a 
line of constant density as well. Here is the necessary 
condition: two correspondent (i.e. closed lines with same 
number of particles within the encompassed area) 
constant density lines of two symplectically equivalent 
distributions must have the same encompassed phase 
space area. Intuitively, this is also a sufficient condition, 
i.e., if the phase area of the two 2D figures is the same, 
there exists a symplectic map, transforming one figure to 
another.  

  Figure 1: Sample phase space distributions of initial 
and final beam. Upper plots show the distributions, lower 
plots show their topological views. The areas 
encompassed by equivalent density lines must be the 
same.   

   The situation for higher dimensions can be analyzed 
similarly, but the conditions become more involved. 
Instead of going into the topology, we give simple 
examples for the beam core near the maximum of 
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distributions, assuming the function is smooth and 
parabolic in the vicinity of its maximum. 

INVARIANTS FOR THE BEAM CORE 
Now, if we look at the distributions in Figure 1, we see 

elliptical density lines near the maxima. This is typical for 
the majority of beam distributions � they have one 
maximum and parabolic density in the nearby vicinity. 
Below we consider smooth distributions with one 
maximum. The Taylor expansion about the maximum  
has only quadratic and higher terms (we present the case 
for any number of dimensions): 

QXXcxyxxbaxyxxf T=+′+=′ ...22...),,( 2 ,(1) 
where f(x,x�,y�) is the distribution function, 

...],,[ yxxX ′= , and Q is the matrix of coefficients. 
For example, for the 2D case the matrix Q is: 
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Because the maximum of one distribution is 
transformed into maximum again, we can linearize the 
symplectic transformation around this point. The vector X 
of small deviations from the maximum point is 
transformed to another vector MXX =′  by symplectic 
matrix M. The condition of symplecticity is 

SSMM T = , where S is: 
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Let�s find how the form Q is transformed. For this, we 
substitute new MXX =′ into the distribution expansion 
near the maximum: 

MXQMXXQXXf TTT ′=′′′≈′)( ,     (4) 
where Q� is the matrix of quadratic coefficients after  

the transformation. Because the distribution expression in 
the old coordinates gives us the initial distribution, we 
have: 

QMQM T =′ .                             (5) 

Multiplying (5) by the S matrix, and using ES −=2  , 
where E is the unity matrix, and SSMM T = , we yield: 

SQMQSMMQSSMMSM T =′=′− −− 11 .     (6) 
This means that the matrices SQ� and SQ are similar 

and that their eigenvalues are equal and are invariants of 
the motion. Therefore, in order to check the symplectic 
equivalency of two beams near their maxima, we have to 
find the matrices Q of the quadratic forms, multiply by 
the matrix S, and find their eigenvalues. If they are equal, 
then there exists a similarity transformation of the type (5) 
between them. If the matrix of this transformation is 

symplectic, this matrix itself represents the transformation 
of distribution near its maximum. Now we have to count 
the number of independent invariants. To do this, we 
consider the equation for the eigenvalues λ of matrix the 
SQ: 

0|| =− ESQ λ .                              (7) 
First, let�s transpose matrices in (7). Using the fact that 

Q is symmetric (i.e. QT=Q), ES −=2 , and STS=E we 
have: 
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Here we used the fact that the transposed matrices have 
same eigenvalues. The second equality of (8) is a 
consequence of the fact that similar matrices (related to 
each other by a transformation of type (5)) have the same 
eigenvalues. The third equality comes from the relation -
S-1=S.  Equation (8) shows that if the matrix SQ has an 
eigenvalue λ, -λ is also an eigenvalue. Therefore, the 
polynomial (7) has only even orders of λ. All the 
coefficients of the various even orders of λ in (7) are 
invariants. The first coefficient of the term λ2n is always 
equal to one; the others are nontrivial functions of matrix 
elements of Q. For an arbitrary dimension n, the matrix Q 
is 2n dimensional, and the number of nontrivial invariants 
is equal to n. For 2D motion quadratic form (2) has two 
invariants: 
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SCHEMES FOR DIAGNOSTICS 
Measuring the invariants of motion introduced in the 

previous Section can provide a test for the Hamiltonian 
nature of beam motion between two locations. The most 
straightforward way to calculate the invariant (9) is to 
measure the distribution function ....),',( yxxf  then to 
obtain the matrix Q  by expanding f in a Taylor series 
about the maximum. Direct measurement of a distribution 
function is not in the mainstream of beam diagnostic 
tasks.  Measurement of various projections of full 4D or 
6D phase space of the beam is what is usually provided. 
Examples include vertical, horizontal, and longitudinal 
profiles (1D projections); vertical, horizontal and 
longitudinal �emittances� (2D projections). 2D projection 
can be restored from the 1D profiles using tomographic 
techniques [3], but no other similar methods have been 
developed yet, to our knowledge, for restoring 4D or 6D 
distribution from 2D projections.  

Measuring the distribution function for 2-D beams (4D 
phase space) should not pose a significant problem. One 
example of a device suitable for that is the so-called 
�pepper pot� , which  is  common in beam diagnostics. A 
schematic view of the �pepper pot� is shown in Fig.2. A 
screen (1) with pin holes (2) is used for spatial 
coordinates ),( yx  selection. A detector screen (2) 
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locates angle coordinates )','( yx . Beam current passing 
through ),( yx  and detected at )','( yx  is proportional 
to )',,',( yyxxf . In order to avoid overlapping of the 
images of individual pinholes on the second screen, pin 
holes on the first screen must be farther from each other 
than the distance defined by the angular spread in the 
beam. As a result, a �pepper pot� doesn�t measure a 
continuous distribution function, but provides discrete 
samples with some unavoidable granularity. This intrinsic 
feature of  the �pepper pot� device doesn�t affect the 
ability to calculate the matrix Q  and the invariants 
because we need to find only a finite number of quadratic 
coefficients of the Taylor expansion (10 for 4D 
distribution), which can be done using a finite number of 
samples. Another important feature of the proposed 
measurement is that we are only interested in measuring 
the beam density near its maximum, where noise 
problems are less significant than in the tails.             

 

 
In case of 3D beams, a generalized variant of the 

pepper pot can be constructed as depicted in Fig. 3. 
Screen (1) with pin holes (2) is used for the spatial 
coordinates ),( yx  selection again. Screen (2) now has a 
single movable pin hole for the )','( yx selection. A 
magnetic spectrometer (3) and time resolving detector (4) 
are used to define the energy and time ),( tz  pair of 
coordinates. Again, we are only interested in 
measurements near the maximum of the beam density but 
noise problem can be much more severe for the 6D phase 
space due to the onset of the notorious �curse of 
dimensionality�. It is illustrated by the following simple 
estimate of the number of particles in the beam required 
for a meaningful measurement. If we measure the beam 

density on a grid of 10 points per each dimension, we 
have 106 cells in the 6D space. For reliable statistics, 100 
particles per cell at least are needed or 108 particles in the 
beam core and ~ 109 particles total in the beam.  

CONCLUSION 
This paper shows that there exist nontrivial beam 

invariants which are preserved if the particle�s motion is 
Hamiltonian in nature. The methods of retrieving full 
information about the beam, as well as the invariant 
values, are discussed. 
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Figure 2: Schematic view of 4D beam distribution 
function measurements using �pepper pot� device. (1) 
Screen with pin holes. (2) Detector screen 

 

Figure 3: Schematic view of  6D beam distribution 
function measurements using �pepper pot� - like device. 
(1) Screen with pin holes. (2) Movable screen with pin 
hole. (3) Spectrometer. (4) Time resolving beam current 
detector. 
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