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Abstract

A basic goal of Model-Independent Analysis is to extract
the physical modes underlying the beam histories collected
at a large number of beam position monitors so that beam
dynamics and machine properties can be deduced indepen-
dent of specific machine models. Here we discuss tech-
niques to achieve this goal, especially the Principal Com-
ponent Analysis and the Independent Component Analysis.

INTRODUCTION

In Model-Independent Analysis (MIA) [1, 2], one col-
lects turn-by-turn beam histories at a large number of beam
position monitors (BPMs) and attempts to deduce machine
and beam properties from the data without fiddling with a
specific machine model. The beam motion recorded at a
BPM is a superposition of machine responses to the physi-
cal signals due to various beam excitations, i.e.,

bp = b0 +
∑

s

∆qs
p∂sb + · · · , (1)

where ∆qs
p is the s-th signal at the p-th turn and ∂sb is the

response function that characterizes machine response to
∆qs. For example, the slope x′ (due to a kick or whatever)
at a certain location could be the signal, and the transport
function R12 from that location to each BPM would be the
response function. Usually the average orbit is subtracted
and Eq. (1) can be casted into a matrix form as

B = UV T , (2)

where the data matrix B contains beam histories at all
BPMs in its columns, U contains the temporal signals
with the s-th column vector us = ∆qs, and V contains
the spatial response functions with the s-th column vector
vs = ∂sb. For convenience, here we assume the signals are
normalized by their rms values and the response functions
are scaled accordingly. The decomposition in Eq. (2) is re-
ferred to as the physical-mode decomposition. Each pair
of temporal and spatial vectors (us, vs) depicts a physical
mode. It is a difficult but important goal of MIA to extract
individual physical modes from the measured beam histo-
ries, which are superpositions of signals from all physical
modes. Depending upon the knowledge we have about the
signals and the responses, various techniques can be used
to accomplish this goal.

When either the signals U or the responses V are known,
it is straightforward to extract the corresponding unknown
components by least-square fitting, i.e., V T = U†B or
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UT = V †BT , where the † indicates the pseudo-inverse
of the matrix. In storage rings, it is common to have si-
nusoidal excitations (for example, in resonant excitation at
certain tune). Knowing this characteristic of such signals,
the corresponding response functions can be obtained using
harmonic analysis (projection).

When there is no prior knowledge of either the sig-
nals or the responses, it is impossible, in principle, to re-
construct the physical modes from the BPM data only.
However, there are major statistical techniques that can
at least partially accomplish this goal based on reason-
able assumptions on the statistical properties of the signals.
Here we discuss the Principal Component Analysis (PCA)
and the Independent Component Analysis (ICA). PCA is a
century-old and widely-used multivariate statistical analy-
sis method and has been instrumental in the development of
MIA (where it is better known as SVD mode analysis be-
cause it was developed before we learned about PCA [2]).
ICA is an exciting advance in statistical data analysis in
the last decade or so [3] and has been explored recently for
MIA applications [4]. Here we briefly review the basics of
these techniques in order to appreciate their potentials in
extracting the physical modes from beam histories. BPM
noise will be ignored since we are interested in the basic
principles rather than technical details.

PCA / SVD MODES

Principal Component Analysis finds a small number of
uncorrelated principal components that can account for the
maximum amount of observed variances and covariances in
the data. Each principal component is a linear combination
of the observed signals and retains the maximum variance
along its direction. Principal Component Analysis can be
achieved by an SVD of the data matrix B as

B = ÛSV̂ T =
∑

modes

σiûiv̂
T
i , (3)

where Û and V̂ are orthonormal matrices whose columns
contain the temporal and spatial singular vectors ûi and v̂i,
and S is an upper-diagonal matrix contains the singular val-
ues σi. The i-th principal component is given by Bv̂i =
σiûi. The uncorrelatedness of the principal components
is assured by the orthogonality of the Û matrix since the
covariance matrix (BV )T (BV ) = SÛT ÛS = S2 is diag-
onal. The maximum variance is assured by the orthogonal-
ity of the V̂ matrix since, according to the Courant-Fischer
minimax theorem, the variance (Bv̂i)T (Bv̂i) = v̂T

i BT Bv̂i

is maximized when v̂i is an eigenvector of the sample co-
variance matrix BT B, and the eigenvectors of a symmetric
matrix are mutually orthogonal (assuming no degeneracy).
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Principal Component Analysis provides a faithful rep-
resentation (in the sense of minimum mean-square errors)
of the measured data with a small number of PCA/SVD
modes. It is well known for its ability to suppress ran-
dom noise and reduce dimensionality of the data. In MIA
beam-history analysis, it has been shown to be very infor-
mative regarding the underlying beam dynamics and ma-
chine properties as well as the performance of the BPM
system [5]. However, instead of getting into the details of
existing applications, here we examine the connection of
the PCA/SVD modes to the physical modes.

As mentioned above, all the principal components
are uncorrelated (thus Û is orthogonal). Therefore the
PCA/SVD modes may be identifiable with the physical
modes only when the original physical signals are uncor-
related (i.e., U is orthogonal). Fortunately, this is often the
case. For example, the common betatron and synchrotron
oscillations in phase space are usually harmonic (or pseu-
doharmonic) oscillations, which are generally uncorrelated
in the normal coordinates. This is the underlying reason
why the PCA/SVD modes seems rather physical. However,
in addition to their uncorrelatedness, PCA/SVD modes re-
quire orthogonality of the spatial vectors in V̂ , but the spa-
tial components of the physical modes are not necessarily
orthogonal (although they are often approximately orthog-
onal when the number of BPMs is large). This contradic-
tion means that the PCA/SVD modes may not be as phys-
ical as we want. Instead, they can be mixtures of several
physical modes. For example, a horizontal betatron mode
(which has a dominant horizontal tune in the temporal vec-
tor) could be mixed with vertical betatron modes or syn-
chrotron mode (identifiable through the mixed-in vertical
betatron tune or synchrotron tune). The PCA’s deficiency
in resolving the physical modes is due to the lack of infor-
mation. After all, the only information used so far for the
physical signals are their mutual uncorrelatedness, which
by itself is insufficient to recover the physical modes. De-
spite this potential deficiency, since PCA/SVD modes pro-
vide a faithful, compressed, and noise-suppressed repre-
sentation of the data, they are very useful for a wide va-
riety of applications and are an important first step in many
other techniques (including those discussed below) that use
additional information about the physical signals to help re-
construct them.

Untangling Mixed PCA/SVD Modes Using Spec-
tral Characteristics

To resolve the mixing of physical modes in the
PCA/SVD modes, one has to rely on extra information
about the physical modes in addition to the mutual uncor-
relatedness. One simple idea is to use the often available
spectral information about the physical signals. Most of
the physical signals, especially in rings, have identifiable
characteristics in their frequency spectra. By using such
information, it is possible to untangle the mixed PCA/SVD
modes so that the reconstructed modes have no mixed char-

acteristics of different physical modes. The idea is to find
a rotation O that rotates the principal components to a
new set of components whose spectra have the expected
characteristics [6]. A rotation is used to preserve the mu-
tual uncorrelatedness since (ÛO)T (ÛO) = OT ÛT ÛO =
OT O = I . Also, because there are sign ambiguities in both
the principal components and the physical signals, it seems
unnecessary to use a more general orthogonal matrix other
than a rotation.

One way to determine the rotation O is to minimize the
mixed-in frequencies in ÛO. This is easy to do when the
mixing is small so that the rotation can be linearized as
O = I +

∑
θijLij , where θij is the rotation angle in

the subspace spanned by the i-th and j-th principal com-
ponents, and Lij = (δikδjl − δilδjk) is the generator of the
corresponding infinitesimal rotation. Let Fj [u] be the j-th
Fourier component of the temporal vector u, then the j-th
component of the k-th rotated vector ũk is

Fj [ũk] = Fj [uk]+
∑

{θαβ}
Fj [ul] (δαlδβk −δαkδβl) θαβ . (4)

The coefficients Fj [uk] and Fj [ul] are known from the sin-
gular vectors. Collecting Fj [ũk] = 0 for all j’s and k’s that
Fj [ũk] needs to be minimized sets up a set of equations to
solve for the rotation angles.

After finding a rotation O that allows ÛO to have the
expected spectral characteristics, the spatial part of the
physical modes is then given by OT SV̂ T . Now note
that the spatial vectors are no longer orthogonal since
(OT SV̂ T )(OT SV̂ T )T = OT S2O is not diagonal in gen-
eral. In a word, by reducing the mixing of spectral charac-
teristics of different physical modes, a rotation O may be
determined such that it rotates the principal components to
a more meaningful decomposition

B = (ÛO)(OT SV̂ T ), (5)

which better represents the physical modes in Eq. (2). Sim-
ulations have shown that this simple technique works well
in extracting the coupled betatron modes [6, 7].

In the following section, we will see many different tech-
niques that amount to the determination of O based on cer-
tain statistical assumptions. For example, O could be ob-
tained as the matrix that diagonalizes the time-delayed cor-
relation matrix 〈ÛT (t)Û(t + τ)〉 for nonwhite signals.

ICA MODES

Independent Component Analysis attempts to recon-
struct the source signals based on the assumption that
they are mutually independent and non-Gaussian. Like
PCA, ICA assumes mutual uncorrelatedness since it is a
necessary condition for independence. For non-Gaussian
signals, independence requires more than uncorrelated-
ness and thus provides extra conditions for determin-
ing the source signals. Extensive research has been de-
voted to the development of ICA in the last decade in
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many fields, which has resulted in many different ap-
proaches/algorithms for computing the independent com-
ponents. A large number of documents and many free
codes are available. A recent study indicates that ICA is
a useful technique for MIA [4]. Here we take a brief look
at the basics of ICA in order to appreciate its principles and
potential for MIA applications.

The independence of any two source signals ui and uj

implies that the expectations of all cross moments of order
m and n satisfy

E[um
i (t)un

j (t + τ)] = E[um
i (t)]E[un

j (t + τ)]. (6)

From this, a sufficient number of conditions can be set up
to solve for independent source signals that are either non-
stationary, nonwhite, or non-Gaussian [8, 9]. For nonsta-
tionary signals, both the covariance of the physical sources
Cs(t) = 〈ui(t)uj(t)〉 and the covariance of the observa-
tions C(t) = 〈bi(t)bj(t)〉 vary with the time t. Since the
spatial responses (the mixing channels) stay the same, the
relation

C(t) = V Cs(t)V T (7)

holds for the covariance matrices C(t) and Cs(t) at dif-
ferent times. Since Cs(t) must be diagonal all the time for
independent sources, these relations provide sufficient con-
ditions to determine V and extract the physical modes. For
stationary signals, both C(t) and Cs(t) do not change with
time, thus covariances at different times provide no extra
information. However, if the signals are nonwhite (with
nonzero autocorrelation), the time-delayed correlation ma-
trix Cs(τ) = 〈ui(t)uj(t + τ)〉 will be different for differ-
ent delay time τ , thus providing the extra information for
determining V through Eq. (7), which holds for the time-
delayed correlation matrices as well [10, 11]. We see that,
for nonstationary or nonwhite signals, second-order statis-
tics is sufficient for determining the sources. One way to
carry this out is to find a matrix V that simultaneously diag-
onalizes two or more different sample covariance matrices.
This can be done with many widely-available algorithms.
Algorithms that (approximately) jointly diagonalize several
matrices (e.g., [11]) are usually more robust against errors
in the sample covariances.

Instead of using second-order statistics, many techniques
use higher-order statistics to formulate a certain objective
function that measures the degree of independence. By op-
timizing such an objective function, independent compo-
nents can be obtained. For example, according to the cen-
tral limit theorem, the sum of independent random vari-
ables tends to be closer to a Gaussian random variable.
Thus independent components can be obtained by opti-
mizing functions that measure the non-gaussianity, such as
the fourth-order cumulants. A nice survey of various tech-
niques/algorithms are available in [12].

To preliminarily examine ICA for MIA applications, we
made a few simple tests on two data sets with several read-
ily available programs. One data set is the experimental
data from the Advanced Photon Source, whose PCA/SVD
modes are described in [13]. The other is tracking data

containing coupled betatron modes, which has been used
in [6]. We used the SOBI algorithm in ICALAB [14] and
the program in [4] for second-order statistics and FastICA
[15] for higher-order statistics. For the tracking data with-
out noise, all programs work in terms of extracting un-
mixed coupling modes. For the experimental data, second-
order programs work quite well, but FastICA fails probably
because higher-order statistics are more sensitive to noise
and needs much larger signal samples. Further studies are
needed to explore various algorithms for MIA applications.

REMARKS

Many techniques are available to extract the physical
modes from beam histories based on often realistic assump-
tions. They are important for achieving the goal of MIA.
Physical modes of linear beam dynamics (betatron modes,
coupling modes, synchrotron modes) are well understood
and utilized, but much work is needed to understand other
modes in order to deduce beam and machine properties
from them. The statistical assumptions for various phys-
ical modes also need to be examined more rigorously.

Thanks to W. Guo for his help in the testing with the
program in [4] and for helpful discussions.
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