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Abstract

Coupling resonance was observed at operating points
near to ), — Q,=1. The coherent instability was devel-
oped at a high-density electron-cooled beam, when the be-
tatron tune was near the resonance line. Theinstability was
suppressed by applying an RF-knockout to reduce the peak
density of the beam. The coupling strength was measured
without el ectron-beam. Therewereresidual componentsof
the xy-coupling in the absence of the electron beam. The
coupling strength was measured in different methods, with
and without cooler-solenoid.

INTRODUCTION

The Heavy lon Medical Accelerator in Chiba (HI-
MAC) [1] was constructed in National Institute of Radio-
logical Sciences (NIRS) for cancer therapy and other re-
searches. The accelerator complex is composed of ion
sources, two sequencia linacs, main synchrotron-rings,
and beam transport lines. In order to increase the circulat-
ing beam instensity in the synchrotron, the multi-turn beam
injection is applied using the horizontal space. Therefore,
the horizontal emittance (260 mm-mrad) is much larger
than the vertical one (10 mmm-mrad). The aperture limit of
the vacuum chamber in the synchrotron is also asymmet-
ric. In such an accelerator with asymmetric aperture limit,
xy-coupling of betatron oscillations should be minimized,
because the narrower (vertical) aperture effectively limits
the amplitude of a particlein wider (horizontal) space.

The xy-couplinginthe HIMAC synchrotronwasfirst ob-
served during the experiments of electron-cooling(EC) [2].
There, the coherent oscillation was resonantly devel oped,
when the working point was near to the coupling reso-
nance, @, — Q4=1.

This paper presents the coupling instability observed in
the HIMAC synchrotron. The measurement of the residual
xy-coupling component, in the absence of the EC, is aso
shown.

THEORY OF LINEAR COUPLING
RESONANCE

Coupling resonance of a low-intensity beam

The lowest order (linear) coupling resonance occurs
when @, £ @, is close to an integer. The driving term of
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the resonance arises from an xy-coupled linear field, such
as a skew-quadrupolefield and a solenoidal field. Thelin-
ear theory of the xy-coupled motion of a particle was de-
veloped in Ref. [6] in transfer matrix formalism.

There is an essential difference between the sum-
resonance (@ + @, = n) and difference-resonance(Q , —
@y = n) [7]. Inasum-resonancethe emittance of aparticle
grows infinitely large, while it was bounded in the differ-
ence resonance.

The strength of the linear xy-coupling, is given by [7]

Cr = 52 § V/BaBy haa(9) + hur(8) €7 R, (1)

wherek,, and k;,; arethe normalized strengths of the skew
quadrupolar field and longitudinal field, respectively. The
normal-mode motion [8] of a particle describes an ellipse
in the transverse space, which isinclined in general.

Electron heating

In the presence of electron-beam along the ion-beam,
the coherent interaction between ion- and electron-beams
causes an instability, which is so called electron-heating [ 3,
4, 5]. The equation of motion, including the coherent in-
teraction between ion- and electron-beams, can be solved
analytically to derive a coupled mode oscillation. With the
boundary condition of the electron beam, the ion-motion
inside the cooler can be written by a matrix whose deter-
minant is not unitary. Thus, the oscillation of the ion-beam
diverges exponentialy.

EXPERIMENTAL APARATUS

Our experimentswere carried out with the HIMAC syn-
chrotron under the conditions shown in Table 1. The RF
was turned off and the coasting beam at injection energy
was used. Two dimensional beam-profile in the transverse
space were measured with the gas-sheet beam profile mon-
itor (SBPM) [9]. The monitor has the dinamic range of
10 ~ 10° Ar'8* jons and resolution of ~0.3 mm at
o(standard deviation). The monitor was precisely aligned
within around 10 mrad in order to evaluate the inclination
of abeam in the transverse real-space. The Twiss-parmeter
B at the monitor isaround 8 m in the horizontal and 6 min
the vertical directions, respectively.

The conditions of electron cooler is also shown in Ta-
ble 1. The density of the electron beam is proportional
to I./R, and corresponds to n, = 5.8 x 10% /cm? for
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I, = 100 mA and R = 3.3. There are two €electrostatic
beam-position monitors inside the cooling section. In the
experiments, the electrodes of the monitor were connected
to asignal generator and used as a dipole-mode shaker.

COUPLING RESONANCE
OF A COOLED BEAM

The experiments of beam compression employing the
EC was carried out in the HIMAC synchrotron [2]. Dur-
ing cool-stacking, a beam instability was observed when
the ion- and electron-beam density became high. Figure 1
shows the waveform of ion intensity and vertical oscilla-
tion, when the instability occurred. Here, the electron cur-
rent was 150 mA and the expansion factor was 3.3. The
sudden beam-loss correlated with the bursts of the vertical
coherent oscillations.

Figure 2 shows the two-dimensional beam profiles. In
this case, the working point was set at (3.71,2.83) and the
beam was lost after ~2.5 s from the injection. Figure 2
showsthat the beam was cooled first in the horizontal space
(1~2.5 9), and then the instability occurred in the vertical
space. The direction of the amplitude growth due to the
instability was dlightly inclined, which means that the in-
stability was related to the xy-coupling.

The instability depended on working point. Working
points were surveyed along aline between (3.69,2.89) and
(3.72,3.13). It was found that the beam was unstable near
to the coupling resonances, Q) , +Qy = 7and Q. —Q, = 1.
The instability was more dangerous around the difference-
resonance than the sum-resonance. These results are con-
sistent with the simulation including the electron-beam
space-chargefield (Fig. 3).

Damping of the instability

Though the instability occurred at high ion-density, it
is possible to to suppress the instability by decreasing
the peak ion-density. The RF-knockout(RF-KO) [11] was
applied at the frequency corresponding to the vertica
betatron-sideband frequency in order to decrease the peak

Table 1: Experimental conditions of the HIMAC syn-
chrotron and electron cooler.

parameter value

lon specie A8+ (Z/A = 0.45)
Circumference 27 R=129.6 m
Injection energy 6 MeV/u

Aperture limit +123 mm(H),+32 mm(V)
Twiss 3 in cooler 8.79 m(H), 9.38 m(V)
Solenoid length im

Solenoid strength 0.05T

e beam current I, =0~200 mA
Cathode temperature 100 meV
Magnetic expan. factor R=1~38

[N

goons)
f
H
/7
/

%
£

o .

Position Intensity
N
o

o

5

Time(sec)
Figure 1: Two-dimensional beam-profiles when instability
occurred.
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Figure 2: Beam intensity and vertical oscillations in the
presence of instability.

density of theion-beam. With the RF-KO, the coherent os-
cillation was suppressed and the stacked ion-intensity was
improved.

The secondary ions, produced by electron beam, are
trapped in the cooling section. Those ions neutralize the
electron beam, and lead to the electron beam instabil-
ity [12]. In order to clear such ions, a transverse elec-
tric field (shaking) was applied in the cooling section [12].
The ions were cleared at their resonant frequency, and re-
duced the neutralization factor. By optimizing the cathode
voltage of the cooler electron, secondary ion spectrum was
obtained. Experimental result (Fig. 4) shows the peaks at
70 kHz(A/Z~20, H,O™" etc.), 100 kHz(A/Z~9, O** etc.),
and negative peak at 224 kHz.

MEASUREMENTS OF COUPLING
STRENGTH

Residual coupling without EC

The HIMAC synchrotron have a residua xy-coupling
fields even in the absence of the electron beam. Aswritten
in the previous section, it was observed that the principal
axis of a beam was inclined in the transverse space when
the working point was near to adifferenceresonance. Here,
both of the electron-beam and solenoid in the cooler were
switched off. In order to estimate the coupling strength,
the beam profiles were measured by the SBPM as a func-
tion of vertical tunealong @, = 3.62. Each beam-profiles
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Figure 3: Simulation of transverse instability including the
interaction between ion-beam and el ectron-beam. Horizon-
tal tuneisfixed at 3.7.
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Figure 4: Spectrum of trapped secondary ions.

showed dlliptical cross-section which were inclined in the
x-y real-plane.

Figure 5 plots the inclination angles of beams as a func-
tion of differential tune, AQ = @, — Q. Theinclination
was larger as the differential tune approachesto zero. This
behavior can be explained by the linear theory of the differ-
ence resonance. Thelinesin the Fig. 5 show the analytical
results with Cy=0.016, 0.008 and 0.004. The most fitting
value of Cy isaround 0.02.

One of the coupling sources can be related to the sex-
tupole components of magnetic field in HIMAC dipole
magnets, which corresponds to B”'/Bp=0.026 m~3[10].
With aclosed orbit distortion (COD) of Az, the skew com-
ponent of the magnetic field seen by the beam corresponds
to ks, = (B"/Bp)Ax. Asaresult, the total coupling co-
efficient becomes Cy = 0.014, where Az = 10 mm are
assumed at each dipoles.

Coupling strength including solenoid

The xy-coupling was also observed by measuring the
coupled mode-tunes splitting. In this case, the cooler-
solenoid was excited with 0.05 T. The coherent betatron
tunes were measured as a function of the current of hori-
zontal defocusing quadrupole (QD). The experimenta re-
sult is shown in Fig. 6. The measured mode-tune was
shifted from linear function (dahed lines in the Fig. 6)
a around the coupling condition, and the splitting of the
normal-modetunesis around 0.05. This value corresponds
to the coupling strength of Cz=0.006, which is consistent
with the cooler-solenoid of 0.05 T.
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Figure 5: Inclination angle of beam near AQ=0 difference
resonance.
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Figure 6: Normal mode tunes including the coupling effect
from solenoid.

REFERENCES

[1] Y.Hiraoetal., Nucl. Phys., A538(1992) 541c.

[2] K. Nodaet al., “Electron Cooling Experiments at HIMAC
Synchrotron”, Proc. of EPAC’ 04, Lucerne, 2004.

[3] V. V. Parkhomchuk and V. B. Reva, Jour. of Exper. and
Theor. Phys., v.91, N5(2000), 975.

[4] P R.Zenevichand A. E. Bolshakov, NIM A441 (2000), 36.
[5] A.Burov, NIM A441 (2000), 23.

[6] D.Edwardand L. Teng, |IEEE Trans. on Nucl. Sci., Vol. NS
20, No.3 (1973), 885.

[7] G.Guignard, CERN 78-11 (1978).

[8] G. Parzen, Proc. of PAC 93, Washington DC, May 1993,
pp.486.

[9] Y. Hashimoto et al., NIM A527 (2004), 289.

[10] A.ltanoetal., Proc. of 8" Symposium on Accelerator Sci-
ence and Technology, 1991, Saitama, Japan, pp.200, 1991.

[11] K. Nodaetal., NIM A492 (2002), 253.
[12] Y. Korotaev et al. , NIM A441(2000), 96.

1323



