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Abstract

The β-functions at the IP can be adjusted without per-
turbation of other optics functions via several approaches.
In this paper we describe a scheme based on a vector
knob, which assigns fixed values to the different tuning
quadrupoles and scales them by a common multiplier. The
values for the knob vector were calculated for a lattice
without any errors using MADX. Previous studies for the
LHC [1] have shown that this approach can meet the design
goals. A specific feature of the RHIC lattice is the nested
power supply system. To cope with the resulting problems
a detailed response matrix analysis has been carried out and
different sets of knobs were calculated and compared. The
knobs were tested at RHIC during the 2004 run and prelim-
inary results are discussed. Simultaneously a new approach
to measure the beam sizes of both colliding beams at the IP,
based on the tunability provided by the knobs, was devel-
oped and tested.

INTRODUCTION

To adjust the β-function at the IP several approaches
have been discussed theoretically and simulated for the
LHC. As the LHC is under construction and the function-
ality of the knobs is essential, the work was repeated for
RHIC, since it is an excellent testbed for verification. The
specific difference of the RHIC to the LHC lattice, which
had to be investigated before, is the nested power sup-
ply system. This reduced the number of adaptable tuning
quadrupoles. Also several quadrupoles which serve as tun-
ing quads are coupled to each other. The lattice which was
used for the study was converted from line to sequence for-
mat in MADX to rotate the starting point from STAR to
IP4. The knobs were calculated for PHENIX, which will
be referred to as IP8. In addition the optics constraints were
monitored in STAR, which will be referred to as IP6.

CALCULATING AND ANALYZING THE
RESPONSE MATRIX.

As mentioned above, the nested power supply system
makes the behavior of the coupled tuning quads not eas-
ily predictable. For this reason and because of the strongly
nonlinear behavior (see Fig.1) of the first knobs calculated
by MAD matching the response matrix for all in princi-
ple usable quadrupoles was computed with MADX. The
nominal strength (for 1m β� at IP6 and IP8) of the differ-
ent quadrupoles or combinations was varied over ranges of
±5% to ±95% (the maximum range for each quadrupole
or combination was chosen so as to correspond to the
full region of stability of the matched solution) of the
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Figure 1: Non linear behavior when matching different val-
ues for β�

x. The behavior of the quadrupole change ∆K is
strongly nonlinear in the range between 0.87 and 1.2 me-
ter. In addition at 0.87 m there is a sudden change of the
solution. At this point the function behaves discontinuous.
This and the nonlinearity render the solution not applicable
in practice.

nominal strength with 40 intermediate steps. The param-
eters α, β, D and Q for both planes where recorded.
These were then plotted as a function of the change of the
quadrupole strength. The investigation of β = f(∆K)
shows, that there is a strong difference in the behavior be-
tween quadrupoles. Three different cases can be identi-
fied: First the β-function is only enlarged, independent of
the sign of the applied change, second the change of the
β-function depends on the sign of the applied change, but
β = f(∆K) is strongly nonlinear and third the β-function
changes over a wide range almost linearly.

In addition the other parameters α, β, D and Q are cate-
gorized in the same way, but only as additional information
and not as a criterion for selection. Only the third category
is adaptable without any additional consideration. The vari-
ables for the control of the strengths of the quadrupoles are
classified according to this scheme. The number of usable
quadrupoles or groups of quadrupoles lies between six and
ten on both sides. All ten were used for the construction of
one set of knobs, nine for a second set.

CALCULATING KNOBS BY LINEARLY
FITTING MAD MATCHING RESULTS.

According to the response matrix analysis, the number
of maximum usable quadrupoles, ten in total, is smaller
than the maximum number of constraints. These are α, β
and dispersion functions, in IP6 and IP8, tune, tune slope
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and chromaticity (16 in total). Depending on the specific
lattice some of these are either not constrainable or do not
change or cannot be constrained in certain combinations.
First simulations showed, that dispersion could not be con-
trolled with this approach. However, the changes in disper-
sion do not increase the IP spot size significantly. Several
combinations of different quadrupoles and constraints were
simulated and the best two results are described below.

For one version (knob version 10) quadrupoles or com-
binations of them, which are controlled by the following K
values, were chosen: K4A8O, K5A8O, K6A8O, KFBA8,
K4A8I, K5A8I, K6A8I, KFAA8, KDAA8 and K7A8. The
basis for the selection was the response matrix analysis
according to the results of the previous section. As con-
straints for version 10 the α and β-functions at IP8 and IP6
as well as the tune Q were used in MADX to match over
the range of ±10% of the nominal β� value. By fitting
the slopes for each quadrupole the knob vector was con-
structed. To characterize the behavior of the knobs, both x
and y knobs are applied simultaneously and scanned over
the operative range, which is for both planes ±20%. The
values of the constraints on the four outermost points of the
knobs range are computed for IP8 and IP6. The results are
all within the given boundaries for the constraints.

For the second version (knob version 11) quadrupoles or
quadrupole combinations which are controlled by the fol-
lowing K values were chosen: K4A8O, K5A8O, K6A8O,
KFBA8, K4A8I, K5A8I, K6A8I, KFAA8, and KDAA8
(one less than in version 10). As constraints the αx and
β-functions at IP8 and α and β-functions at IP6 as well
as the tune Q were used. αy was not constrained because
simulations showed this to be best choice. One constraint
of version 10 had to be dropped because one quadrupole
less was included. Also here a range of ±10% was used to
calculate the knob values.

Both knob sets (Version 10 and 11) fulfill the required
condition for the constraints. Compared to version 10 ver-
sion 11 has the better performance for the dispersion but
the confinement of the β-function change to IR8 is slightly
degraded. Also the tune change is increased. The choice
for either of these knob sets for operation depends on the
demands on the constraints.

CALCULATING KNOBS USING THE
RESPONSE MATRIX.

Tuning knobs can be obtained deterministically deter-
mined by analytically inverting the response matrix. For
this purpose specific conditions have to be fulfilled. In the
case of the RHIC lattice in the region of IR8 and IR6 the
response matrix is well conditioned and the number of con-
straints was chosen to be equal to the number of tuning
quadrupoles whereby a square response matrix is gener-
ated. The values of the response matrix are only spread
over a range of three orders of magnitude with the excep-
tion of one element which deviates by five orders. By in-
verting the matrix and solving the linear system one obtains

a well behaved solution for the knobs. The solution of this
calculation for the knobs does not significantly differ from
the one obtained by MAD matching. This also holds for
the behavior of the constraints when changing the knobs
by ±20% in both planes.

Using SVD [2] to invert the matrix gives the same result
within machine precision compared to direct inversion. In
this case the primary goal of SVD is not to invert but to
characterize the condition of the response matrix. For the
RHIC case the singular values of the diagonal matrix vary
only by one and a half orders of magnitude. Two different
cases were studied in which the smallest two (case I) and
the smallest four (case II) values of the diagonal or singular
matrix were set to zero in the inversion. Again the results
do not differ much from the one obtained by MAD match-
ing or from the one obtained by full inversion. The SVD
conditioning brought no improvement of the behavior.

In case of nonlinear response of the constraints to the
quadrupole increments ∆K, solving the linear system to
construct the knobs creates an error which depends on the
size of the change and on the response behavior. A method
[3][4] to minimize the error is to compromise between the
permitted quadrupole increments ∆K and the target values
for the constraints. The relation of the maximum changes
of different tuning quads to each other can be determined
by analyzing the plots which where used to calculate the re-
sponse matrix. By using the method of the maximum like-
lihood [5] one derives the penalty function and calculates
the optimized solution for a chosen set of weights for the
constraints (allowed deviation from target values) and lim-
its on the changes of quadrupole strength (minimizing the
change with respect to different linear ranges calculated by
response matrix analysis). The χ2 function for this general
approach is

χ2 = χ2
min + (α− α̃)T V−1 (α− α̃)

where χ2 is the minimum, χ2
min the residual minimum, α̃

the set of calculated parameters (constraints or quadrupole
changes ∆K) and V the weight matrix. V is a diago-
nal matrix whose diagonal elements contain weight vari-
ables. Integrating the set of constraints with their allowed
ranges as weight and the ∆K with their ranges deter-
mined by linearity as weight in the penalty function where
the constraints and the ∆K are related by the linear re-
sponse matrix creates a new penalty function with which
both quadrupole increments and changes of the constraints
can be minimized according to their weights. Taking the
derivative and setting it to zero yields the condition for
this minimization. The application of this adapted Moore
Penrose method for multidimensional optimization to the
RHIC lattice brought no noticeable improvement as the
nonlinear behavior for the selected set of quadrupoles is
not very strong in the range of the applied changes.
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RESULTS FROM BEAM EXPERIMENTS

These beam experiments had the goal to prove the valid-
ity of the developed knob theory, the range of application
and search of possible error sources for malfunctioning of
the knobs. The RHIC on-line model [6] gives a much bet-
ter operational description of the real lattice vs. the design
MAD model, the knobs were recalculated using this model.
The resulting knobs are similar to the ones described above.

The beam experiments were performed in two major
stages. The first was to test the stability of the beam when
applying the tuning knobs. For this stage there were only
four bunches with low energy injected, accelerated and
squeezed. This was to prevent damage to the installation
in case of knob induced beam loss. At this stage the knobs
were applied and the stability observed. When passing this
stage a new batch of bunches (nominal number and inten-
sity) was injected and the procedure above repeated.

In a first attempt the β functions for both beams and
planes were squeezed in IP8 by≈ 12% of its nominal value
(β�

x,y ≈ 1m). The effect on the counting rates in IP8 (blue
curve) and IP6 (red curve) is shown in Fig.2. A clear in-

Figure 2: Counting rates during the offset optimization
with LISA and when applying the tuning knob by decreas-
ing the horizontal and vertical β-function at the IP for both
beams in IP8. The blue graph shows the counting rate in
IP8 and the red in IP6.

crease in the counting rates in IP8 was observed. No prob-
lems concerning beam stability were recorded. The beam
loss measurement showed a slight increase in the beam sta-
bility. The background in IP8 increased more strongly than
in IP6, but it was acceptable for both.

In addition the dispersion was measured before and af-
ter the application of the tuning knobs. The dispersion beat
created by the β squeeze was calculated and compared to
the one predicted by the on-line model. This is shown in
Fig.3. The two curves show an extraordinary agreement
around the whole ring in the phase. The amplitudes differ
slightly which is caused by the measurement uncertainty.
Points of great disagreement are caused by bad BPM read-
ings.

Figure 3: Comparison of the dispersion wave introduced
by the tuning knob as predicted by the on-line model (blue
curve) and measured (red curve).

In the second attempt both IP6 and IP8 were squeezed
simultaneously. For this, a new knob set had to be calcu-
lated. Simulations had indicated that this approach would
be more successful than squeezing the IPs with separate
two knob sets. Also here the β-functions for both beams
and planes were reduced by ≈ 12% of their nominal value.
Counting rates in both IPs increased approximately by the
same factor. However, a steering correction had to be per-
formed in IP6.

SUMMARY AND CONCLUSIONS

Various sets of tuning knobs for IP8 have been calcu-
lated with different methods. The results are similar due
to the well conditioned system after the response matrix
analysis was performed and the tuning quadrupoles were
chosen accordingly. For the beam experiments a new set of
knobs was calculated using the response matrix extracted
from the on-line model. This set was successfully used to
squeeze the IP β-functions in IP8 and IP6 by ≈ 12% of
its nominal value with negligible effects on dispersion and
other constraints.
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