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Abstract

A hallmark of the “non-scaling” FFAG lattices recently
proposed for neutrino factories and muon colliders is that a
wide range of momentum is compacted into a narrow radial
band; α = (dL/L)/(dp/p) is of order 10−3. This property
is associated with the use of F0D0, doublet or FDF triplet
lattices in which the F magnet provides a reverse bend. In
this paper simple analytic formulae for key lattice proper-
ties, such as orbit displacement and path length as a func-
tion of momentum, are derived from thin-element models.
These confirm the parabolic dependence of path-length on
momentum observed with standard orbit codes, reveal the
factors which should be adjusted to minimize its variation,
and form a useful starting point for the thick-element de-
sign. Finally, in the context of a 10-20 GeV/c muon ring,
the thin-element formulae are compared against lattice op-
tical properties computed for thick-element systems; the
discrepancies are small overall, and most discernible for
the triplet lattices.

THIN-ELEMENT MODEL

A simple model for the closed orbits versus momentum
in nonscaling FFAG lattices[1] has been proposed and re-
fined by the authors at a recent series of workshops[3, 4, 5].
The model has two components: (1) Physics – magnetic
elements represented by kicks; and (2) Geometry – path
lengths from the “law of sines”. There have been three
stages in the refining of our understanding of this model:
• Under the assumption of equal cell length and

quadrupole strength, geometry suggests F0D0 gives
the shortest path-length, then doublet, then triplet.

• Under the assumption of equal cell length and equal
betatron tunes, a calculation to second order shows
that the increased quadrupole strengths of the doublet
and triplet (compared to F0D0) exactly compensate
the geometric effect so that path-length performance
of the three lattice types is identical (at this order).

• Under similar assumptions, but to third order in el-
ement strengths, not only are the strengths greater
but also the strength splitting is greater for the triplet
(in particular) and the doublet when compared to the
F0D0; and this leads to a reversal of the path-length
ranking: triplet, (doublet, F0D0).

However, fixed cell length is a false constraint. The main
advantage of the doublet is that the 2nd drift space may be
very short, leading to reduced time-of-flight. Note also that
magnets in the triplet tend to be longer.

∗ also Dept. of Physics & Astronomy, University of British Columbia.
† TRIUMF receives federal funding under a contribution agreement

with the National Research Council of Canada.

Elaboration of the Model

We shall employ the subscripts d, f to indicate whether
a quantity is associated with a D or F element. Lengths l
and quadrupole strengths β are values within the half-cell.
Thus the strengths βd = B1dld and βf = B1f lf , where B1

is the field gradient. The element separations l0, l1, l2 are
defined in Figs.1,2.

A simple example of the thin-element model is the
F0D0. The reference momentum pc is defined as that
whose orbit is on axis in the F-quadrupole; the half-bend
angle of the D-sector is θ. At other momenta p the angular
kicks ψ are proportional to the strengths β and displace-
ments x:

ψd = (pcθ − βdxd)/p , ψf = βfxf/p , ψd + ψf = θ .
(1)

From the “law of sines”

(l0 + δl0)
sin θ

=
(xf + l0 cot θ)

cos ψd
=

(xd + l0 csc θ)
cos ψf

. (2)

Displacements of closed orbits at D and F elements:

xd ≈
(p− βf l)(p− pc)θ

βdβf l − p∆β
, xf ≈

p(p− pc)θ
βdβf l − p∆β

. (3)

The cell path length isL0 at momentum pc. To lowest order
the increment at other momenta p is δL:

(p− pc)

[
βf l[2βd(2p − βf l)− βf (p + pc)]− 2p2∆β

]

[βdβf l − p∆β]2
θ2

(4)
Here and throughout l = l0, l2, λ for F0D0, triplet and dou-
blet respectively, with λ = l1l2/l0. Also ∆β=βd−βf .

Expressions (3,4) are a global momentum description of
behaviour; not merely a local linear indication. If ∆β = 0,
then the pathlength variation is parabolic in momentum.

Evidently a strength splitting (∆β<0) can be beneficial
due to an increase of the size of denominator in (Eq.4), and
parabolae are not sacrosanct. However, the strengths βd, βf

are not free parameters; they are constrained by the tunes
and lattice type, as indicated below.

Lattices with D & F Sectors

Thus far we have considered lattices in which the D el-
ement is a combined function magnet and the F element is
a pure quadrupole (at the reference momentum). We con-
sider now the case that the F element is also a combined
function magnet. The two bends are constrained by the
closure condition θd + θf = θ = π/Nc. Typically the F
sector has a reverse bend angle θf < 0 and so the D sector
must have stronger bending θd > θ.
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There is little difference in optical performance between
cells with one or two combined-function sector magnets.
What is different is the centring, or lack of it, within the F
magnet. With a single sector bend (i.e. θf = 0), we have
no choice in whether the low and high momentum orbits
are disposed equally about the reference-momentum orbit.
With two sector bends, we gain an additional free parame-
ter, θf , and are at liberty to choose how this extra freedom
is used. For example, we may set the reference momentum
at the minimum of the parabola; but in that case we have
lost control of the disposition of the orbits. Alternatively,
if pc “floats”, then θf can be used to minimise one from
several orbit quantities (e.g. centring and aperture).

The analogues of the closed orbit offsets (3) are

xd = (p−pc)
(pθ − βf lθd)
βdβf l − p∆β

, xf = (p−pc)
(pθ + βdlθf )
βdβf l − p∆β

.

(5)
Due to space limitations, we give the path-length formula
only in the case of equal quadrupole strengths (βd = βf ):

δL = (p−pc)θ[(3p− pc)θ + 2βf l(θf − θd)]/(β2
f l) . (6)

The coefficient of p2 measures the strength of the disper-
sion in path lengths, and is equal to 3θ2/(β2

f l); which is
independent of how the dipole bending is shared between
F and D elements. In a higher order calculation where
strength splitting becomes important, it is found that con-
centrating the positive bending in the D sector is beneficial.

Geometry Effect

Assuming equal cell lengths and that all lattice types
have equal integrated quadrupole strengths, geometry sug-
gests F0D0 gives the shortest path-length, then doublet,
then triplet. This geometrical effect is illustrated in
Figs. 1,2. The cell lengths are L0 = 2(ld + lf + l0), 2(ld +
lf ) + (l1 + l2), 2(ld + lf + l1 + l2), for F0D0, doublet,
triplet, respectively.

Figure 1: Layout of F0D0 cell with D-sector and F-quad.

Figure 2: Layout of F0D0 cell with D-sector and F-quad.

ELEMENT STRENGTHS

To maximize the focusing and yet avoid the 1/2-integer
resonance, we take the cell phase advance Φ in horizontal

and vertical planes to be equal and just under π at the injec-
tion momentum. Starting from exact thick-element formu-
lae for the tunes, expansions in powers of Ad,f ≡ βd,f/p
were made to second and higher order as noted below.

F0D0

To 2nd order, Ad = Af ≡ A0 with

A2
0 =

3(1− cos Φ)
L0(ld + lf + 3l0)

→ (1− cos Φ)
2l0

. (7)

The field gradients are

B1d = Ad p/(ld c) , B1f = B1d(ld/lf ) . (8)

To 4th order there is a splitting; in the thin lens limit,
ld, lf → 0, one obtains

(Ad + Af ) = 2A0

[
1 + (1− cosΦ)(ld − lf )2/(3l0)

2
]

(9)

(Ad −Af ) = A0(1− cos Φ)(ld − lf )/(3l0) . (10)

Triplet

To 2nd order we find the same expression as for the
F0D0 case (7) but with 3l0 substituted by 3l2. Evidently,
the triplet quadrupole strengths are larger than in the F0D0
case. To 3rd order there is a splitting; in the thin lens limit
one obtains:

δAf = A0(1− cos Φ)
l2(2l1 + l2)

4(l1 + l2)3

[
l1 −

2

3
(ld − lf )

]
(11)

δAd = A0(1− cos Φ)
l22

4(l1 + l2)3

[
2

3
(ld − lf ) − l1

]
(12)

Doublet

To 2nd order the strength is Ad = Af ≡ A0 with

A2
0 =

3(1− cos Φ)

[L0(ld + lf + 3l0) + 6(l1l2 − l20)]
→ (1− cos Φ)

2l1l2
(13)

Evidently, the integrated quadrupole strength can be
greater than in the F0D0 case because l20 ≥ l1l2. To 3rd
order there is a splitting; in the thin lens limit one obtains:

δAd,f → ±A0(1− cos Φ)(ld − lf )/(6l0) . (14)

For δAd/δAf take the positive/negative sign, respectively.

OPTIMUM PATH LENGTH

As noted previously, the different strengths and splittings
have a profound effect on lattice performance, as does cell
length. We have obtained expressions for the orbit offsets
and path lengths with strength splittings as appropriate to
the three lattice types; and in each case found conditions
to optimize pc. However, because of space limitations we
present here results for the simple case of equal strengths.

Let Ľ, L̂ be the minimum, maximum path lengths. The
condition of smallest pathlength variation is that paths be
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equal at the injection and extraction momenta p̌, p̂. The
pathlength increment is:

δL = (p− pc)(3p− pc − 2βf l) θ2/(β2
f l) . (15)

The condition L(p̌) = L(p̂) is solved for the reference mo-
mentum:

pc = [3(p̌ + p̂)− 2βf l]/4 . (16)

The minimum path length occurs at momentum

p(Ľ) =
1
3
(2pc + βf l) , δĽ = − (pc − βf l)2

3β2
f l

θ2 . (17)

Substituting (16) in (17) we discover that p(Ľ) = (p̌+ p̂)/2
as is anticipated on the grounds of symmetry. We make the
same substitutions in the pathlength to find L̂ = L(p̌) =
L(p̂). Hence the total pathlength variation is

L̂ − Ľ = 3(p̂− p̌)2θ2/(4β2
f l) . (18)

Under the condition of equal betatron tunes, in the thin lens
limit, and to 2nd order in Ad, Af , we have the relation be-
tween F0D0, doublet and triplet quadrupole strengths that

β2
F0D0l0 = β2

doubletλ = β2
tripletl2 = (1− cos Φ)(p̌)2/L0 .

(19)
Thus, remarkably, the three (optimized) lattices have equiv-
alent pathlength performance when strengths are calculated
to 2nd order; at higher order the splittings become impor-
tant and the picture changes.

Table 1 shows values of the cell length variation ∆L =
L̂ − Ľ from (18), and of xf at 10 and 20 GeV from
(4), for various lattices, compared to those obtained by
tracking. The FDF triplet, doublet and F0D01 were pre-
sented by Berg[3], the seminal F0D03 by Johnstone[1], and
F0D02 by both[2]. Subscripts 10,20 refer to the momen-
tum (GeV/c), while indices F, T denote thin-element and
tracked values, respectively. The agreement is very good
for F0D0 lattices, less good for doublet and triplet ones,
where the close spacing of the magnets makes the thin-lens
approach less effective. (Excellent agreement can be re-
covered by including finite-length magnets in the analytic
treatment[5].)

Table 1: Comparison of formulae with tracking

FDF doublt F0D01 F0D02 F0D03
L (m) 5.18 4.32 5.47 6.00 6.5
Nc 93 101 113 200 314
pc (GeV/c) 20.1 18.8 18.2 18.9 16.6
〈β〉 (T) 6.30 5.32 3.61 3.06 1.70
xf10,F (cm) -7.5 -10.1 -8.2 -6.4 -7.1
xf10,T (cm) -9.7 -9.9 -8.3 -6.8 -7.2
xf20,F (cm) 0.1 0.6 3.0 1.4 7.5
xf20,T (cm) -1.9 0.3 3.4 1.8 7.5
∆LF (mm) 2.51 2.38 1.99 0.85 1.64
∆LT (mm) 1.84 2.12 2.12 0.90 1.62

Number of Cells Nc

The spread in cell transit time δT = τ0∆L/L0 is subject
to two requirements, one set by (18) and (19), the other by
the minimum energy gain per cell.

δT

τ0
=

3
4

(p̂− p̌)2 θ2

(p̌)2(1− cos Φ)
,

δp

ω δT

1
(p̂− p̌)

≥ W . (20)

Here W is a parameter determining the longitudinal
acceptance[3], δp is the momentum impulse per cell, and
ω is angular radio frequency. So the minimum number of
cells Nc is given by:

4
3

(1− cos Φ)
ωτ0

[
Nc

π

]2

≥ W
(p̂− p̌)3

(p̌)2δp
. (21)

Typically this formula results in slightly low values for
F0D0 and doublet, and slightly high ones for the triplet.

SUMMARY

Based on calculation of the quadrupole strengths to 2nd
order we have given expressions for orbit offsets, path
lengths, etc., for a variety of lattices and found them to be
remarkably similar. Space limitations prohibit the presen-
tation of results to higher order. However, continuing the
expansion to third order one concludes:
• For equal tunes βd �= βf .
• The splitting is largest and in the correct direction

(βf > βd) for the triplet.
• For equal tunes, the strength splitting is smallest and

in the wrong direction (βd > βf ) for the F0D0.
• Corollaries: (1) For a triplet, the strong strength-

splitting term in the denominator will give a slight tilt
to the parabola. (2) For the F0D0, a tune split between
horizontal and vertical will increase the strength split
and may have a beneficial effect on path length.

• The expansion parameter is largest, and the truncated
series approximation least accurate, at the injection
momentum. But this is precisely the circumstance un-
der which we specify the tune and design the lattice;
and from this derives the deficiencies of formula (21).

• The analogue of (21) for the optimum number of cells
when βd �= βf has been obtained; and is typically an
underestimate for the triplet.

• Strength splitting implies modification of the model
longitudinal hamiltonian - no longer a pure cubic.
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