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Abstract 
The report describes a simulation technique for study of 

unsteady self-consistent dynamics of charged particles in 
resonant linacs that consist of cavities and travelling wave 
sections. The proposed approach is based on unsteady 
theories of excitation of resonant cavities and waveguides 
by a beam of charged particles and RF feeders. The 
theory of waveguide excitation [1] is extended to the case 
of spatially inhomogeneous travelling wave structures. 
The SUPERFISH code [2] is used to evaluate 
characteristics of the axially symmetrical travelling wave 
sections. The PARMELA code [3] is applied to simulate 
motion of the particles at each time step of the integration.  

INTRODUCTION 
Acceleration of intense charged beams in the RF linacs 

with the short pulse regime, when the filling time of 
standing wave (SW) bunchers and travelling wave (TW) 
sections cannot be neglected, requires detail learning of 
transients to diminish their influence on beam parameters.  

Although the greatest information about unsteady 
acceleration can be got using the particle-in-cell (PIC) 
codes, for calculating the beam dynamics in the long RF 
structures these PIC codes need rather large computing 
resources. At the same time it is often necessary to study 
slow varying phenomena of narrow frequency spectrum 
in working pass band of the RF linacs [4, 5, 6, 7]. It was 
shown in [8] that in this case such well-known code as 
PARMELA, which usually is applied to simulation of 
steady dynamics, can be used to simulate unsteady self-
consistent particle dynamics in SW cavities. The present 
work is aimed at developing the simulation technique of 
unsteady particle dynamics in inhomogeneous TW 
structures and integrating this technique in the unified 
algorithm of self-consistent unsteady beam dynamics 
simulation in RF linacs containing both SW and TW 
structures.  

METHOD  
Extending the theory of excitation of waveguides [1] to 

inhomogeneous accelerating structures, we suppose that 
the eigen orthogonal waves 

sE ±′
! , 

sH ±′
!  (electrical and 

magnetic field respectively) with the norm  
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can propagate along the longitudinal direction ±z of an 
inhomogeneous waveguide. Here ze!  is the unit vector 
along OZ axis, S(z) is the waveguide cross-section at z 
coordinate. Then, according to [1] the Fourier harmonics 
of fields can be presented as follows: 
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where 
,zjω
!  is the longitudinal component of current 

density; ( )sC z±′  is the function of z, that satisfies the  
equation:  
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If the geometry of a structure varies slowly in a 
longitudinal direction, the eigen waves in cross-section z 
can be expressed through the eigen waves 

( )0sih z
s sE e E±

± ±=
! !

, ( )0sih z
s sH e H±

± ±=
! !  that correspond to 

the homogeneous waveguide with cross section S(z), as 
follows:  
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where: ( )s sd dz h zψ = , (Re{hs(z)} is a propagation 

constant, Im{hs(z)}=αs(z) is an attenuation constant; ξs(z) 
is a real function of z coordinate. The condition (4) 
provides adiabatic invariance of wave power flow. In a 
periodic waveguide functions ( ) ( )0 0,s sE H± ±

! !
 can be 

expressed as Floquet�s series:  
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Substituting Eq.(4) in Eq.(1) one can obtain connection 
between norms of waves ( ,s sE H± ±′ ′

! ! ) and ( ,s sE H± ±

! ! )  
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Differentiating Eq.(6) with respect to z and substituting 
Eq.(4) in Eq.(2) and Eq.(3), the Fourier harmonics of a 
field can be found in the following form:  
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where ( )sC z±
 is the new amplitudes of expansion 
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In the case of acceleration of a train of bunches, fields 
and beam current are specified by narrow frequency 
spreads around working frequency ω0. Thus, 
accomplishing the inverse Fourier transformation in Eqs. 
(4) and (5) one can obtain expression for fields of forward 
wave in the lower band  in a time dependent form:  
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The slow varying amplitude ( )0 ,C t z+
 obeys the equation  
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where ( ) ( ) ( ) ( )
20
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the synchronous space harmonic of field, ( )vg z  is the 
group velocity, 
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harmonic of current density expressed through the 
Lagrange coordinates ( ), ,k kr t zτ!  of particles that represent 
a beam, q is the charge of the particles. The coordinates 
depend on the field amplitude ( )0 ,C t z+

, so they are slow-
varying functions of time.  

It should be noted that the field of the backward wave 
could be found in the same way.  

For numerical solution of Eq. (10) we will use the 
difference equation of the first-order of approximation [8]  
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where the indexes n and m � correspond to the discrete 
time tn=n∆t and longitudinal coordinate zm=m∆z, 

accordingly; the amplitudes ( ),n mC  are defined as  
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a current ( ),n mI  with the mean value ( )I n t∆  over the 

period 2π⁄ω0 is given in the form  
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To obtain a self-consistent set of the equations, it is 
necessary to supplement Eq. (11) by a set of equations of 
motion of the particles in the fields Eq. (9). For solution 
of the equations of motion we will use the PARMELA 
code.  

SIMULATION TECHNIQUE 
The developed simulation algorithm was aimed at using 

the PARMELA v.3.22 code. The code evaluates beam 
loading in SW cells. Processing the output file of the code 
with coordinates of particles it is possible to calculate the 
Fourier harmonic of a beam current using the Eq. (12) at 
the end of each TW cell that represents period of a dick-
loaded waveguide (DLW). Obviously, in this case ∆z 
must be multiple to cell length and ∆t - must be an integer 
number of periods of an accelerating field. Then ( ),n mC  
determines a field in the mth cell on the nth step of time ∆t. 
Knowing the initial amplitudes in cells ( )0,mC  and the 
amplitude in the first cell ( ),0nC  as the function of time the 
Eq. (11) can be solved evaluating increments of amplitude 
in each TW cell at each time step.  

Slow varying complex amplitudes rC  of fields 

( ) ( ) ( ) ( ) ( ) ( ), Re{ }, , Re{ }i t i t
r r r rE t r C t E r e H t r C t H r eω ω≈ ≈

! ! ! !! ! ! !  in SW 

cells (except cells of the input and output couplers) can be 
evaluated in a similar way. The increment rC∆  of the 
amplitude can be calculated according to the technique 
[8] 
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where ωr is the resonant frequency of the cavity, rQ  is the 
unloaded quality factor, shZ  is the shunt impedance per 
unit length, d is cavity length, Е0 is the mean amplitude of 
the on-axis electric field, vk

! is the particle velocity, β is 
the coupling coefficient of the cavity with the feeder, ϕr is 
phase shift, ( )

0

n

rP  is incident RF power at the given time 
step. The superscript line in Eq. (13) means time 
averaging. This procedure is discussed in Ref. [8].  

To simulate motion of particles the PARMELA code 
needs the field distributions in SW cells and relative 
amplitudes of the spatial harmonics (see Eq.(5)) that have 
to be normalized according to Ref. [9] to restore fields of 
the eigen waves in TW cells (see Eqs. 4 and 5). Besides, 
values of ωr, shZ , rQ , and values of α0, R0, vg as 
functions of z have to be specified. Evaluation of the 
values can be done with the SUPERFISH group of codes. 
For the standing wave cells the procedure is obvious. The 
characteristics of an inhomogeneous DLW are presented 
as a set of the characteristics of a homogenous DLW with 
iris radii that are equal to each iris radius in the simulated 
DLW (as it follows from Eq. 4). Characteristics of the 
homogenous DLWs are evaluated using technique [10] 
from field patterns in the cavity stacks. The relative 
amplitudes of the spatial harmonics can be obtained from 
the on-axis field distribution of the stacks. 

Thereby the self-consistent simulation of beam 
dynamics can be fulfilled in linacs with both SW 
bunchers and TW sections.  

Let's consider the features of the designed algorithm. If 
the beam current at the given temporary step is not equal 
to zero the running values of the amplitudes and phases of 
fields in the cells are written into the input file of the 
PARMELA code and the simulation of particle motions 
starts. After the PARMELA code completes the task, its 
output files are processing to get necessary data to 
evaluate the increments of the amplitudes. Then, the 
process repeats. Therefore, to keep a physical sense of the 
obtained results, the step t∆  should be longer than the 
time-of-flight of particles through the simulated segment. 
On the other hand, Eq. (11) gives correct results only at 

ztvg ∆<∆ , so quantity of TW cells M should be less then 
c/vg, were c is the velocity of light. Besides, there is an 
artificial tailing of a wave front along the section if 

gv t z∆ ≠ ∆  because of the amplitude averaging over the cell 
length. Therefore edges of current and RF power pulses 
should be at least longer than tM∆ . The typical values of 
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t∆ and M are 10 periods of RF oscillations and 40 cells 
accordingly. The long linac can be broken in several 
segments that contain acceptable amount of cells. The 
beam from the previous segment is injected into the 
subsequent one by creation of files with coordinates of 
particles in the six-dimensional phase space at each time 
step. The time steps are the same through the simulation 
of the whole linac. At creation of the files the Lagrangian 
time of particles is decreased by the integer number of 
periods of the RF field. At simulation of the subsequent 
segment the PARMELA code accepts the file that 
corresponds to the running time step. The segments of 
DLW are bounded by half-cells. The field of the last half-
cell is the boundary condition to simulate the subsequent 
segment. 

The testing of the algorithm was carried out in several 
ways. First of all the results of simulation of excitation of 
pillbox cells and homogenous DLW by short ultra 
relativistic bunches were compared with the analytical 
results for a steady state mode (the corresponding 
formulas can be found, for example, in [4]). The 
simulated results and the analytical prediction coincide 
each other. For example, the simulated field distribution 
along the DLW containing 40 cells agreed within 0.1 % 
with an analytically derived one for all the regular cells. 
Then, inhomogeneous DLW was tested. As an example 
DLW of the KUT linac was chosen [11]. The DLW 
contains four homogenous pieces conceded with 
matching cells, altogether there are 35 cells; phase 
advance is 120° per a cell; vg drops from 0.024% to 
0.009% of c. An analytical steady state solution for 
accelerating field distribution was evaluated from the 
equation of power diffusion [12]. The test has shown that 
results agreed within 3.5%. It is a good result taking into 
account so steeply changing of vg.  

To check capabilities of the designed algorithm, the 
full-scale simulation of the KUT linac from an entrance of 
the injector, which consists of bunching and accelerating 
cavities, up to an exit of the DLW was carried out. In Fig. 
1 the time-space distribution of the self-consistent field in 
the DLW excited by a RF source and the simulated beam 
is shown.  
 

t (µs) Cell No. 

E 
(M

V
/m

) 

 
Figure 1: Distribution of the self-consistent field.  

The data were obtained at a beam current and RF power 
that are characteristic for KUT operation (accelerated 
beam current is about 0.8 A, power of a RF source is 
12 MW). The duration of a beam current pulse was 
chosen shorter than a RF pulse to observe influence of a 
beam loading.  

CONCLUSION 
The designed technique of simulation of transients in 

RF linacs allows obtaining the data on time dependent 
accelerating fields and characteristics of a beam. The 
carried out testing has shown, that the model adequately 
describes physical processes. Accuracy of simulation of 
the characteristics of fields and a beam corresponds to the 
approximations that were made while developing the 
technique. The technique can be useful for design of 
linacs as well as at researches of beam dynamics. 
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