
REENGINEERING AND REFACTORING LARGE-SCALE SCIENTIFIC
PROGRAMS WITH THE UNIFIED PROCESS: A CASE STUDY WITH

OSIRIS PIC PROGRAM
Jincheol B. Kim1,2, In Soo Ko1 , Hyyong Suk2

1. POSTECH, Pohang, Kyoungbuk, 790-784, South Korea
2. Center for Advance Accelerators, Changwon, Kyoungnam, 641-120, South Korea

Abstract

OSIRIS is a large-scale particle-in-cell (PIC) code
which was developed at Particle Beam Physics
Laboratory (PBPL) in UCLA for researches of laser-
plasma interactions. OSIRIS was reengineered and
documented in UML by our group and ported to Linux
cluster machine of 8 nodes. We report our current status
of developing the extended version of OSIRIS, which was
named as OSIRIS-X and maintained and developed with
the Unified Process. Some guidelines in designing and
refactoring large-scale scientific codes are presented and
discussed. A design model of numerically intensive
programs for large-scale computing is suggested, and it is
discussed how we can use it for rapid development and
prototyping of scientific programs. We also discuss future
challenges and prospects in OSIRIS-X development.

INTRODUCTION
Computational tools and codes in accelerator researches

become more important. They tend to become larger and
more complex as accelerator technologies advance. Many
of the tools have become commercialized these days and
most of the problems with current accelerator
technologies can be solved by these commercialized and
generalized softwares in general. But when new concepts
and its principles must be explored, a wholly new
approach and problem-solving and design technique must
be sometimes introduced. This initiation of a new
challenge in accelerator researches requires development
of appropriate computation and simulation codes to
investigate them in an appropriate way.

Though software engineering has advanced much as the
demand rises on cost-efficient methodologies in
maintenance and development of complex softwares,
many of the computation and simulation codes are still
based on traditional programming techniques. Even
though some of the recent advanced concepts such as
Object-Oriented Programming (OOP) have been
introduced into the code developments, powers of those
advanced concepts are not facilitated fully.

OSIRIS is a particle-in-cell simulation code for
researches of laser-plasma interactions and advanced
accelerator concepts developed by Particle Beam Physics
Laboratory (PBPL) in UCLA. It was imported to Center
for Advance Accelerators in Korea Electrotechnology
Research Institute for laser-plasma researches and has
been used to analyze and investigate the experiments in
the group theoretically. It is currently under upgrade and
reengineering with the name of OSIRIS-X (OSIRIS

eXtended) to include new physical features into the code
for future researches.

We report our progresses on the introduction of
concepts of object-oriented software engineering and
design patterns into scientific code developments. A
design model based on science activities in real world is
suggested based on our experiences of refactoring
OSIRIS. Some practical issues on effective
implementations are discussed.

DESIGN MODEL AND PRINCIPLES

Software Model based on Real-World Situations
 Parameter Setup

Interface
Diagnostic
Interface

Particle-in-cell Kernel

Numerical
System

Physical
System

Diagnosti
cs

Data
Dump and
Storage

GUI
Paramet
er Setup

Script
Parser

Figure. 1. Design Model of OSIRIS-X

OSIRIS-X has the design model based on science
activities in real world, which is described in Fig. 1. PIC
Kernel, which is the original OSIRIS PIC code, simulates
the complex interactions between electromagnetic field
and charged particles as a time evolution of the machine
of continuous state variables such as x, p, E, B, ρ, and J.
Initial parameter setup is delivered to the kernel through a
common interface. With this common interface to the
kernel, different types of input parameter specification
can be implemented, appended, and modified without
affecting the kernel.

Diagnostic components also communicate with the
kernel through a common diagnostic interface. This
interface specifies a standard communication channel
between the diagnostic module and the PIC kernel. This
diagnostic interface only provides the diagnostic module
with basic information on the status of the physical
variables. Calculations of physical quantities and analysis
of the simulation are implemented in the independent
diagnostic module and the data dump and storage module.
This imitates the measurement in real world.

Based on the design model in Fig. 1, class hierarchies
and relations were rearranged and restructured as shown
in Fig. 2. Each component in Fig. 1, such as PIC kernel
and Diagnostics, is designed as a subsystem with classes

Proceedings of EPAC 2004, Lucerne, Switzerland

2697

supporting its function. In the previous version of OSIRIS,
the classes were not organized as subsystems in a
consistent design model and complex interdependencies
between classes and subcomponents made the
modification of OSIRIS difficult. We introduced interface
classes between subsystems to maintain low coupling
between them. It makes the modification of parts of the
program much easier without affecting other components.
Subsystems communicate with other subsystems through
the standardized interface implemented as interface
classes. Any modified features can be easily added if a
new module follows the defined interfaces as the
communication channel to the subsystem. These interface
classes use patterns, which is the standardized structures
and idioms of object-oriented software design, to
maintain low coupling between subsystems and high
cohesion among the classes inside each subsystem. Some
basic patterns for these interface classes will be discussed
later.

Figure 2. Class Interdependency and Organization with
Interface Classes

Performance Issues and Its Relation to Design
Model

The object-oriented design and analysis (OODA) is
generally suitable for rapid and systematic development
of large scale softwares, but performance can be seriously
deteriorated because of layered structures and heavy
communications between classes and components.
Scientific softwares require high performance and this
constraint must be considered when we design softwares
of heavy computations such as PIC simulation codes.
Some design principles are suggested as follows.

! Low coupling must be maintained between
subsystems which are not related to computations,
such as script interpreter and diagnostics and data
dump modules. This makes software maintenance,
enhancement and addition of new functions much
easier without affecting other components. This
low coupling can be easily introduced to the model
by using design patterns [2, 7].

! Layers and hierarchies must be reduced as many
as possible in modules of heavy computations. We
must keep simple structures in components related

to heavy computations to reduce process loads due
to communications between structures.

! When we design the numerical kernel, it is better
to design several separate kernels which deals with
specific cases efficiently and to make an
appropriate kernel loaded suitable for a problem of
specific conditions and constraints. One large
kernel which calculates all of the general cases
usually deteriorates the performance. For example,
it is more beneficial in performance to design
kernels with Cartesian coordinate and spherical
coordinate separately and to load each kernel for
specific problem geometry than to design a kernel
which solves a problem with generalized
coordinates and meshes. Using small components
suitable for specific problems is the general
strategy adopted in the design of operating
systems like UNIX, such as the Mach microkernel
for example, and performance critical systems.

Use of Design Patterns
Design pattern is descriptions of structures and

communicating objects and classes that are customized to
solve a general design problem in a particular context
which occurs repeatedly in the software design [7]. We
can develop softwares consistently and organize and view
the whole structure of complex softwares by using design
patterns. Maintenance and iterative enhancement of large
scale scientific programs can be made easier and more
systematic by using design patterns.

The interface classes which connect different
subsystems with PIC kernel were designed by using basic
design patterns. It makes OSIRIS-X easily extensible.
Some basic patterns are suggested as follows:

! A small kernel for specific problems is better for
performance enhancements. The program must be
able to select and load an appropriate kernel to
start a new simulation with maintaining low
coupling with other subsystems. Adaptor, Factory,
Strategy and Singleton design patterns make this
possible.

! One of the objectives introducing interface classes
is to make them more efficient to extend existing
modules and to append a new module simply by
using standard methods defined in interface
classes. Some modules such as diagnostic modules
can include much different functions and
implementation strategies and this can make it
difficult to use the standard methods. Facade and
Composite patterns are appropriate for this design
problem.

ISSUES ON IMPLEMENTATION

Use of CASE Tools
Appropriate CASE tools can greatly enhance the

productivity of software design and development.
Rational RoseTM is a well known and widely used OODA
case tool but it is expensive. CASE tools such as Rational

Proceedings of EPAC 2004, Lucerne, Switzerland

2698

RoseTM is essential for developing large-scale and
enterprise-level applications with appropriate team
managements. It is sometimes enough for scientific
software design such as OSIRIS-X to use public
sharewares, such as Objecteering UML Personal Edition,
or GNU public softwares such as Umbrello, which is
laboratory-level and 3 to 5 people are engaged in
maintenance and development.

Objecteering UML Personal Edition is provided freely
in the Internet, and Professional Edition and Enterprise
Edition are also provided with relatively low prices than
other commercial CASE tools like Rational RoseTM.
Objecteering UML Personal Edition does not support
team management and some features of the Unified
Process, but it is useful enough for our purposes.
Umbrello, a GNU public-licensed CASE tool, is small
and practical. Umbrello also supports source code
generation from the design model by UML, which is very
useful and can make the development process much
efficient by providing source codes containing class
definitions which implements complex class
interdependencies consistently. The Microsoft Visio 2002
supports UML modelling and some project management
features which is useful for documentation and design of
OSIRIS-X.

Embedding Python Interpreter in OSIRIS-X
Scientific softwares usually set up initial parameters of

a simulation or a computation by reading a simple script
file. Programs written in FORTRAN 90 or 95 use the
namelists for parameter setup. Programs written in C or
C++, such as XOOPIC, include their own lexical analyzer
and parser by using powerful tools such as LEX and Yacc
or Bison. The namelist feature in FORTRAN 9x is
suitable for specifying initial parameters but it is
restricted and difficult to set up parameters dynamically.
An independent script interpreter can be an alternative but
it takes some time to develop even though many tools
helping programming language design are now available.
A solution to this problem is to embed an existing script-
language interpreter into the program and to let the
embedded interpreter interpret the input script and
transfer the interpreted values to the numerical kernel.

Python is a concise and powerful object-oriented script
language and has widely used in various applications.
Python can be embedded in application programs or any
application can be imported as a module of the Python
environment by API�s provided by Python. Many of the
powerful features of Python, such as dynamic typing,
powerful data types such as list and tuples, and various
classes and functions of Python libraries, can be used in
writing the parameter script and in user own applications
by embedding the interpreter in an user�s application.

The previous version of OSIRIS used the namelist
script of FORTRAN 9x language. Python interpreter will
be embedded in OSIRIS-X which will make researches
by OSIRIS with many complex parameters much efficient.
Tkinter, Python�s GUI module, will be integrated to
OSIRIS-X to help users set up parameters, to get

diagnostic information on the simulation and to post-
process large amounts of data produced by the OSIRIS
PIC kernel. The PIC kernel of OSIRIS-X will also be
developed as a Python module and then interactive
simulations will be possible which will be useful in initial
parameter search for finding meaningful parameter range.

FUTURE PROSPECTS
The suggested design model and principles can be

adopted generally in developments of various codes for
accelerator physics researches. Based on the design model
and principles, OSIRIS-X will be upgraded for better
computational performance and for conveniences which
helps efficient data production and analysis with GUI-
based parameter setup and diagnostics. Additional PIC
kernels of OSIRIS-X are under development
independently from PBPL of UCLA. It will contain PIC
kernels with supports of generalized coordinates of grids,
particle motions and field profiles, standard diagnostic
interfaces for easy extension of diagnostic modules, new
physics modelling modules for the kernel. Scripting input
parameters with Python will help users exploit the powers
of Python language in their simulations and enhance the
productivity of simulation researches.

ACKNOWLEDGEMENTS
This work was supported by the Korea Research

Foundation Grant (KRF-2003-015-C00121). J.B. Kim
and I.S. Ko also appreciate the financial support from the
Center for High Energy Physics at Kyoungpook National
University. H. Suk was supported by the Creative
Research Initiatives Program of Korea Ministry of
Science and Technology.

REFERENCES
[1] Roy Gerrit Hemker, Particle-in-cell Modelling of

Plasma-Based Accelerators in Two and Three
Dimensions, Ph. D. Dissertation, University of
California, Los Angeles, 2000.

[2] Craig Larman, Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design and the Unified Process (2nd Edition),
Prentice-Hall PTR, 2002.

[3] J.P. Verboncoeur, A.B. Langdon, and N.T. Gladd,
Comp. Phys. Comm. 87, 199-211, 1995.

[4] C.D. Norton, B.K. Szymanski, and V.K. Decyk,
Communication of the ACM, vol. 38, No. 10, Oct.
1995, pp. 88-100.

[5] Grady Booch, Object-Oriented Analysis and Design
(2nd Edition), Addison Wesley Longman, Inc., 1994.

[6] Grady Booch, James Rumbaugh, and Ivar Jacobson,
The Unified Modeling Language: User Guide,
Addison Wesley, 1999.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison
Wesley, 1995.

Proceedings of EPAC 2004, Lucerne, Switzerland

2699

