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Abstract
At the KEK 12GeV-PS main ring (PS-MR), when the 

least square method is applied to correct whole beam orbit 
all at once, it remains unacceptable beam loss and it is 
necessary to adjust the local positions of the beam orbit 
by hands with the beam loss monitors until the beam loss 
is suppressed under an acceptable level. However, the 
orbit generated by this way doesn’t always satisfy the 
minimum-loss condition. In this paper, a new method is 
proposed. It focuses a fact that the beam loss distribution 
depends on the shape of the beam orbit, and formulates 
this relationship to a functional approximation by using a 
neural network algorithm. Then, solving an optimization 
problem for generated network system, data of the beam 
shape which is more suitable for the beam loss of the 
accelerator can be obtained. The description of the system 
construction and experimental results are presented. 

INTRODUCTION
For the orbit tuning about the synchrotron accelerator, 

it is deficient to correct the COD (Closed Orbit 
Distortion) from the beam position signal. There are 
measurement errors at the beam position monitors and the 
setting errors of the vacuum chambers. Then, the beam 
touches the wall of the beam pipes and losses. Thus, the 
orbit tuning is necessary from the point of view of beam 
loss monitors in order to minimize the beam loss. 

At the PS-MR, the beam orbit is adjusted at each 
measured point of beam position data by the local bump 
method with the beam steering magnets. The operators 
correct the beam orbit with the beam loss monitors until 
the beam loss is suppressed under an acceptable level. 
However, this strategy depends on the traditional history 
of the orbit tuning and operator’s experience. Besides, the 
beam orbit tuned by this way doesn’t always satisfy the 
minimum-loss condition for the accelerator. 

Note a fact that the beam loss distribution depends on 
the shape of the beam orbit. If this relationship can be 
formulated in some way, it is expected that the minimum 
loss condition can be obtained by using some kind of the 
optimization methods. 

In this paper, a new strategy is proposed for the beam 
orbit tuning. It formulates the relationship between the 
shape of the beam orbit and the beam loss distribution by 
using a neural network algorithm. The neural network 
creates a vector map from some of the data sets called 
“training data”. A training data set consists of an input 
vector and a reference vector. The neural network 
receives the input vector and generates a corresponding 
output vector. This map is characterized by a process 

called “training” which adjusts the internal parameters of 
the network. Then, solving an optimization problem for 
the trained neural network, the orbit data which is more 
suitable for the beam loss of the accelerator can be 
obtained. This method will be more systematic and 
efficient than the previous method.

In this paper, we introduce an overview of the neural 
network. And then, as the PS-MR is an applicable 
example, we show a concrete network training strategy 
about the relationship between the shape of the beam orbit 
and the beam loss distribution. Next, we just refer about 
the optimization method and show the experimental 
results for our approaches. Conclusion and challenges for 
the future are finally shown. 

NEURAL APPROACH FOR THE 
FORMULATION OF THE RELATIONSHIP 

BETWEEN THE BEAM POSITION AND 
BEAM LOSS 

Backpropagation Neural-Network 
There are various types of neural network algorithms. 

In this paper, the Backpropagation (BP) method [1] is 
used to formulate the relationship between the shape of 
the beam orbit and the beam loss distribution. BP method 
has generated a lot of good results for many actual 
problems whose relationships between their inputs and 
outputs are nonlinear or higher order correlation. Figure 1 
shows the structure of a feed-forward network for the BP 
method. 
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Figure 1: Feed forward neural network. 

The BP network consists of an input layer, middle 
layers (not always one layer) and an output layer. Each 
layer is a set of the units, and each unit in a layer is 
connected to each unit in the succeeding layer via a 
weighted link. When an input vector is presented to the 
BP network, each input unit is assigned to one of the 
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input vector component values. The units in the next layer 
receive the input unit values through links and compute 
output values to pass to the next layer. In each unit of the 
middle layers or the output layer, the sum of input values 
is restricted between 0.0 and 1.0 by a sigmoid transfer 
function (1). 

(1) 

This process continues until the output layer produces an 
output vector for the BP network. After an input vector 
propagated forward to the output layer through the middle 
layers, the reference output vector for the input vector is 
used to compute an error value for each unit in the output 
layer. These error values are reduced by adjusting the 
weight value of the links. This operation is called 
“training”. At the output layer, each weight value for a 
unit is adjusted to minus partial differential orientation for 
the corresponding error value. On the other hand, for the 
update weights at each middle layers unit, a composite 
function of all error values in the succeeding layer have to 
be used. Because weight values in a layer affect all units 
of a succeeding layer. This is why the sigmoid transfer 
function is used by each unit in the middle layers or the 
output layer.  

The BP network which is well trained by a real 
problem must has a generalization property. It means that 
when this network is given an input vector which is 
different from the training input, the network can output 
the appropriate result for the problem. In general, the 
network training with higher generalization property 
depends on the amount of training data. 

the Neural Network for the PS-MR

There are two periods for the beam orbit tuning in order 
to reduce the beam loss. One is the injection period, and 
the other is the several ten milliseconds after the beam 
acceleration at which the orbit shape transforms 
significantly. The orbit tuning is divided into two works; 
one is for the horizontal direction and the other is for the 
vertical direction. A precise orbit tuning is not necessary 
for horizontal direction, because the dimensions of the 
beam pipes are landscape and there are enough clearance 
for the beam and the pipe’s wall. Thus, the BP network of 
the orbit tuning is trained for the relationship between the 
vertical beam position and corresponding beam loss at the 
injection period. The training data for the BP network is 
acquired by following way. A certain beam orbit is 
transformed by some random local bumps. And then, a set 
of the training data which consists of the beam position 
data and beam loss data at that time is acquired. 

Here, we assume that the BP network finished the 
successful training about the relationship between the 
beam position and loss and also, we could know the best 
shape of the beam orbit by the optimization. To actualize 
this best orbit shape for the PS-MR, the local bump 
method will be suitable. In theory, this method can move 

one of a beam position which is measured by a beam 
position monitor to the desired displacement and direction 
without any effect at other positions of the beam orbit. 
The local bump method is executed by using the steering 
magnets in three combinations. But in actual, this 
manipulation generates a few errors and gives undesired 
displacement to any other beam positions. It is cause that 
each parameter which decides the input of the steering 
magnet for the local bump has a little error. Then it may 
be difficult to actualize the best orbit shape by using this 
method. There is another problem that the orbit control 
system of the PS-MR will not acquire the training data 
with sufficient quantities to success the network training. 
Because this system is old, and the ability of the data 
processing or the data transmission speed cannot satisfy 
our demands. 

To get the optimal solution which is applicable for the 
actual beam tuning, we use “a virtual beam orbit” to the 
input pattern of the BP training data. This orbit is 
generated at random from the ordinal beam orbit. Then, 
the input of the steering magnet which corresponds to this 
variation is calculated based on the local bump method. 
After this calculation, the ordinal beam is moved and 
changed beam loss data is acquired. The relationship 
between the virtual beam orbit and the beam loss can be 
restated the relationship between the input variation of the 
steering magnets and the beam loss. Although there are 
several differences between the shape of the virtual beam 
orbit and the shape of the actual beam orbit due to the 
previous problem of the local bump method, we expect 
the BP network to train within those errors.  

There are two advantages for above operation. The first 
is that the actual beam position data doesn’t need and the 
training data can be acquired effectively. The second is 
that the optimal solution by this way can be use to the 
actual beam tuning directly. 

OPTIMIZATION TECHNIQUE 
Though the optimization problem about the shape of 

the beam orbit realizes the minimum beam loss, it has 
many local minimum solutions. Avoiding these local 
minima and deriving a global optimal solution, we apply 
the Simulated Annealing (SA) which is one of the 
heuristic optimization methods. The detail of SA algorism 
is shown in [2]. 

EXPERIMENTAL RESULT 
In this section, the experimental results for our 

approaches are shown. The training data of the BP 
network was acquired by following methodology on 
ground of the data acquisition ability of current the PS-
MR orbit control system and limited data acquisition time.    

Nine steering magnets out of twenty eight were chosen 
to give local bumps at the points of quarter range (2-
1D~2-7D) of an arbitrary ordinal orbit. At this range, the 
shape of the virtual beam orbit was decided at random 
(maximum ° 4.0 mm from position zero, step 1.0 mm) 
and corresponding input of steering magnets was 

Training Data Acquisition and Application of 
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calculated. Then, the ordinal orbit was transformed and 
the amount of beam loss was changed. Figure 2 shows 
these operations. 

The virtual orbit data and the changed beam loss data 
were bound to a set for training data to the BP network. 
Hence, the BP network for this experiment was 
constructed from 7 input units and 56 output units. Also 
the amount of middle layer units was decided 56.
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Figure 2: The beam loss variation by the random local 
bump. 

At the experiment in June14, 2004, thirty sets of the 
training data could be obtained for 1 hour of beam tuning 
time. The training for the BP network finished about 50 
minutes, where the error tolerance of the network outputs 
for training data was configured 0.002. For the 
optimization of the trained network, the best input pattern 
was searched by using normal random numbers (average 
0, dispersion 0.2). The performance criterion for the 
evaluation of the solution was 1-norm of the network 
output vector. Figure 3 shows the expectation from 
optimization result and Figure 4 shows actual result in 
June 21, 2004.

0

0.5

1

1.5

2

10 20 30 40 500

0.5

1

1.5

2

10 20 30 40 50

Volt

-4

-2

0

2

4

Ordinal orbit

Input variation derived by
optimized virtual orbit

Optimized virtual orbit

2-1D 2-7D

mm

Monitor Num Monitor Num

Figure 3: Expected result by optimization. 

 Figure 4 shows the total beam loss decrease slightly. 
However, expected result from optimization for the 
trained network was not obtained. There are two reasons. 
First, we didn’t have time to obtain enough amount of the 
training data set in there experiments. We will update 
each devices of orbit control system to enable more high-
speed data acquisition. The second reason, as shown in 
Figure 4, was the variation of the orbit shape due to the 
passage of time. In other words, the property of the 
accelerator changes as time advances. For this problem, 
online training will be necessary for the neural network to 
adapt the change of the accelerator’s property.  
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Figure 4: Experimental result. 

CONCLUSION 
Although the experimental result figured out some 

problems for our beam tuning approach, our approach 
performed to reduce beam loss. The neural network is 
effective for the orbit tuning operation because witless 
orbit correction causes huge beam loss. 

In the future, we’ll achieve the neural network training 
with higher order precision and then, our method will be 
practical for actual beam orbit tuning of the accelerator. 
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