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Abstract

Some perturbations of discrete nature are known to influ-
ence the performance of a proton storage ring, contributing
to parasitic background, decay of beam currents and bunch
tail buildup. Such are, for example, intra-beam scattering
and residual gas scattering. These processes are to a large
extent described by existing analytical theory. The latter,
employing a large amount of averaging, usually neglects
effects arising from system nonlinearity. So, the motion of
tail particles in the presence of a sufficiently nonlinear RF
voltage under influence of intra-beam scattering strongly
deviates from the average across the bunch and the analyti-
cal approach seems inadequate for it. To overcome this sit-
uation we have developed more accurate numerical meth-
ods for calculations of bunch evolution under influence of
a rather broad class of jump-like perturbations. Here we
present the computational algorithms and their application
to assessment of coasting beam and proton background in
HERA-p.

INTRODUCTION

Particles in a bunch are subject to Coulomb interac-
tions.These interactions become weak at high energies.
However, microscopic incoherent interactions, or colli-
sions, still cannot be neglected completely. Such collisions
lead to chaotic particle momentum change. A transition of
momentum from the transverse to the longitudinal direc-
tion is enlarged by the relativistic factor γ and can lead to
bunch size growth and particle losses. For proton acceler-
ators like HERA, the intrabeam scattering leads mostly to
longitudinal bunch growth. The momentum transfer from
the transverse to the longitudinal direction in a single scat-
tering event is approximately [4]

∆p = γp cosψ (1)

where ψ is the azimuthal angle to which the particle is
deflected in the c.o.m. system. One can either calculate the
rate of events leading to direct particle loss (the Touschek
effect, [8] [4] ) or the average change of the synchrotron
invariant (the intra-beam scattering, [7], [2]). To find the
density evolution one would need to solve an equation of
Boltzmann type. Such an equation is usually too complex
and further simplifications are employed. The most com-
mon one is the Fokker-Planck or diffusion approximation.
It is extensively used, for example, to study the influence
of intrabeam scattering on the electron beams where due to

synchrotron radiation stationary bunch distrtibution is es-
tablished. We expect that for the problem of proton (or ion)
escape from the stable RF bucket this approach may be in-
appropriate since it does not take large momentum jumps
into account. So, the Touschek losses are not described by
a diffusion process. Therefore, the diffusion coefficients
depend on the bunch density and such processes cannot
be described by a Fokker-Planck equation as soon as the
beam distribution changes noticeably on the time interval
of interest. To analyse the beam tail distribution and par-
ticle losses more accurate computations may be required.
We propose a computational procedure that is essentially a
method of solution of the Boltzmann equation.

THE CHAIN METHOD

The proposed method is aimed at calculating particle
distribution evolution in electromagnetic fields under in-
fluence of various types of small discrete perturbations
(jumps), perhaps depending on the bunch distribution it-
self. It rests upon following assumptions.

1. Jumps happen rarely in comparison to typical oscilla-
tion periods in the media. Then the statistical information
about the bunch is concentrated in the probability distribu-
tion of some slowly varying parameters or adiabatic invari-
ants. It is possible to deduce from them the entire informa-
tion needed about the statistical behavior of the bunch. for
example free path distributions and so on.

2. The distribution changes slowly under the perturba-
tions.

3. There is no correlation between motion of individual
particles, and of the motion of individual particles and the
perturbation so that the motion is approximately a Markov
process (process without aftereffect) on small time scales.

4. The motion is not chaotic.
Suppose the perturbation depends on the state of the sys-

tem, but in such a way, that when we fix the system state
it turns into a Markov process. This is the case for intra-
beam scattering - under fixed bunch density the scattering
can be considered to be a Markov process and the den-
sity changes slowly. Then techniques practically identi-
cal with those of Markov processes can be applied. Sup-
pose the we are given a Markov process of jump type.
Then we can either consider it to have a continuous phase
space , write down an appropriate (Chapman-Kolmogorov)
integro-differential equation for the density evolution and
then develop a discrete numerical scheme. Or we can di-
vide the phase space in cells and assume that the jumps can
happen only between such cells.Then the collision process

Proceedings of EPAC 2004, Lucerne, Switzerland

2583



can be modelled by a Markov chain with the modification
that the self-consistency is taken into account.

A Markov chain is given by a discrete space of states Ω
and transition probabilities from state i to state j in time
t pij(t). The role of the infinitesimal generator of such
Markov process is played by

aij = lim
t↓0

pij(h) − δij
h

(2)

Therefore, the transition probabilities satisfy the Kol-
mogorov’s system of equations

d

dt
pij(t) =

∑

k

aikpkj(t) (3)

and the solution satisfies the initial conditions
pik(0+) = δik (see [5]).

Let the transition probabilities pij(h) depend on the cur-
rent state of the chain and be sufficiently regular at h = 0,

pii(h) = 1 − aiih+O(h2)

pij(h) = aijh+O(h2), i �= j

denote

x1 = p10 . . . xn+1 = p1n, xn+2 = p20 . . . xn(n+1) = pnn

(4)
then

ẋ(t) = Ax(t)
where

A =




A11 . . . A1n

. . . . . . . . .
An1 . . . Ann



 (5)

and Aij = diag{aij} ∈ R
n is a diagonal matrix with

diagonal elements all equal.The solution is

x(t) = exp{At}x(0)

The transition matrix P (t) = {pij(t)} is thus found
and the probability distribution at time t is p(t) = pT

0 P (t)
where p0 is the initial distribution.

Applying this formalism in small steps and recalculat-
ing A after each step, we have a tracking procedure for the
distribution.

xτ = xT
0 P (x0, τ) , 0 � τ � h1

xτ = xT
h1
P (xh1 , τ) , h1 � τ � h2

. . . . . . . . . . . .
xτ = xT

hi
P (xhi

, τ) , hi � τ � hi+1

. . . . . . . . . . . .

(6)

In [1] convergence estimates are given.Due to the special
structure of the Kolmogorov system it admits a fast solution
algorithm:

x(t) = eAtx0 = (E + (At) +
1
2
(At)2 + . . .)x0

eAt =
∞∑

i=0

Ci

Ci = Ci−1
1
i
(At)

C0 = E

and because of the sparse structure of A the number of
operations required to calculate eAt with precision ε is esti-
mated as O(n4)(log ε)−1. In practice n is no more than 40
and the time step is sufficiently large so that the most time-
consuming task is the calculation of infinitesimal generator
A.

In the case of intrabeam scattering collisions happen
rarely and thus their probabilities do not depend on local
bunch density but on the average density around a test par-
ticles over a large time interval. In other words by the av-
eraged density

lim
T→∞

1
T

∫ T

0

f(gt(φ, p))dt = f̂(φ, p)

where gt is the transformation associated with the syn-
chrotron motion. One can show that in case this motion is
Hamiltonian the averaged density has the form f̂(q, p) =
|J |ρ(H(q, p)) where J is the Jacobian of the action-angle
transformation, ρ an arbitrary function and H the Hamil-
tonian function. This shows that the statistical information
needed for description of the scattering process is detem-
ined by the distribution of the invariant.

An average of a function u(q, p) over the invariant curves
with respect to the ergodic density f̂ is

〈u〉 |h =
∫

H(q,p)=h

f̂(p, q)dqdp (7)

All possible values of the invariant are divided into states
{Ωi}N

i=1. In the longitudinal plane we have to distinguish
between various regions of the phase space which may have
the same value of the invariant. So we first divide the phase
space into domains not containing separatrices and then
enumerate them as before.

The distribution is then given by the vectors {ρi}N
i=1.

When a collision occurs , the collided particle either stays
in the same state or jumps to another. Transition proba-
bilities pij(t) (depending on time) denote the probabilities
that a particle starting in an arbitrary point lying in state i
lands in state j after time τ . To apply the chain formal-
ism one needs to know the infinitesimal generator. To ob-
tain it one inserts some finite time τ into expression 2 for
which pij,t(τ) − δij is still small. This can be, for exam-
ple, the time of one turn in the ring, one second or any
other time for which the probability of two or more colli-
sions is negligibly small compared to the probability of just

Proceedings of EPAC 2004, Lucerne, Switzerland

2584



one collision. Let the transition probabilities between the
states resulting in a single collision be given by the matrix
T = {Tij} and the probabilities of (one) collision be given
by γ̂i(τ) = γiτ +O(τ2), then for a sufficiently small τ the
transition matrix pij(τ) is given by





T11γ1τ + (1 − γ1τ) . . . T1nγ1

T12γ2τ . . . T2nγ2

. . . . . . . . .
Tn1γnτ . . . Tnnγn + (1 − γnτ)





(8)
Then

{aij} = lim
τ→0

pij − δij
τ

= Γ(T − E) (9)

where Γ = diag{γi} and E is the unit matrix. Tij is
obtained by averaging the collision cross-section over the
ergodic density and the collision probability γ(t) is propor-
tional to the average bunch density on the particle path. We
finally get the expression for the infinitesimal generator of
te form

aij = r20πNpdiag{〈v〉 〈f(q)〉H∈Ωi
}(T − E) (10)

with the cutoff impact parameter r0.

APPLICATION TO THE STUFY OF THE
COASTING BEAM PRODUCTION

The coasting (unbunched) beam has been a serious prob-
lem in the operation of the HERA proton ring. After about
10 hours the proton bunched beam of 100mA produced 1-
2mA of the coasting beam current (see figure 1 ).

∆I , mA

run time, t/h

Figure 1: The observed coasting beam current at HERA-p

The suspected sources have been the Rf noise and the in-
trabeam scattering. We applied the described technique to
assess the portion of the coasting beam produced through
intrabeam scattering. The simulations showed that the
bunch bahavior is expected to be diffusive. The expected
rates of escape from the Rf buckets caused by the intrabeam
scattering are below those required to accumulate the ob-
served coasting beam current.The bunch density evolution
and the loss rates from the stable Rf bucktes are shown in
figures 2, 3. Recent studies of influence of the Rf noise [6]

indicate that it is potentially the major cause of the prob-
lem 1. We think that the proposed simulation technique
may appear to be useful for the assessment of the impact of
intrabeam scattering on the beams of heavy ions for which
this effect is stronger and higher loss rates are expected.
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Figure 2: Distribution function diffusion over 10 hours
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Figure 3: Loss rate from the Rf bucket
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1in [1] it is proposed that the usual assumptions about the mixing prop-
erties of the synchrotron motion used to derive the Fokker-Planck equa-
tions for the synchrotron motion with Rf noise [3] may not be true and a
correction to the diffusion coefficient is introduced. With this correction
the diffusion in the bunch centre is weaker. This leads to a possibility that
the Rf noise has a strong impact on the tail particle stability while exhibit-
ing smaller influence on the bunch core. This propositions seems to be in
agreement with observations at HERA.
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