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Abstract

Singular Value Decomposition (SVD) of the orbit re-
sponse matrix has become an invaluable tool for orbit cor-
rection at storage rings worldwide. SVD based orbit cor-
rection has now been realised at DELTA, a 1.5 GeV syn-
chrotron light source[1]. However, due to certain orbit de-
mands at DELTA, we frequently have to face corrector lim-
itations during the process of orbit correction. This work
focuses on presenting an analytic algorithm on how to treat
physical current limitations when seeking for a SVD based
orbit correction. In contrast to previously published meth-
ods, this approach is fairly easy to implement and does not
afford a numerical solver. Concepts and results are pre-
sented.

INTRODUCTION

An applied dipole kick ϑj at a position j to a beam in a
storage ring will yield in a stationary orbit distortion ui at
another position i with u ∈ [x, z]. Neglecting a change of
twiss functions or tune for moderate ϑj as well as higher
order multipole fields in the vicinity of the beam, the or-
bit response matrix (ORM) R composed of columns ui for
each corrector j is to be considered constant and indepen-
dent of actual orbit offsets �u. Thus, the resulting orbit off-
set �u0 due to a set of dipole kicks �ϑ is given by the linear
superposition

�u0 = R�ϑ. (1)

The task of orbit correction is to find a suitable set of cor-
rector kicks �ϑ which will result the inverse of a measured
orbit deviation to a sought orbit reference �u0 = �uref − �u.
For the special case of a non-singular, square matrix R
this is accomplished by multiplying equation (1) with R−1

from the left to receive the solution �ϑ = R−1�u0. However,
in general R is neither squared nor ’well-conditioned’, as
will be explained later. For those cases SVD helps to de-
sign a ’pseudo-inverse’ R� so that the sought solution vec-
tor takes the form

�ϑ′ = R��u0, (2)

with χ2 = (�u0−�u′0)
2 becoming a minimum for �u′0 = R�ϑ′

within the range(R). Yet, under practical circumstances,
this may not be the whole story. In the need of local or-
bit bumps with sufficiently large orbit offsets and small
phase advances between the dipole correctors to be used,
the desired orbit kick afforded by some dipole correctors
{k}may exceed their physical current limitation. However,
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the above solution does not include these side conditions,
thus rendering the gained solution useless.

A common technique to overcome the stated problem is
to successively pick any corrector k, which is to be set be-
yond its limit, truncate its share to the solution to its limit-
ing value and subtract the resulting orbit offset from the
sought orbit difference. Then, equation (2) is solved again
for the remaining correctors by setting the corresponding
column k of R to zero. This procedure is iterated until no
more correctors exceed their limits. Although this method
will yield a physically feasible corrector setting, we ob-
served, that it is not unusual to end up with a solution that
might deteriorate the present orbit, rather than improving
it. This may be the consequence of the algorithm itself,
mostly due to a lack of an appropriate criterion to decide
upon the correct order of corrector limitations. However,
even for a prediction to improve the orbit, the application
of the corresponding corrector setting may in fact worsen
the orbit or even result in beam loss. This phenomenon
was identified as being a result of the inherent disregard of
a potentially error dominated null space (see below).

An alternative approach to overcome these problems was
to suggest a ’numerical hybrid method’ [2]. This method
employs the analysis of SVD in a first step to clear the set of
linear equations of possibly existent singularities. The re-
stated problem is then fed into a numerical solver, capable
of respecting the side conditions stated. While this method
will certainly lead to a satisfying solution, it remains to be
of an opaque numerical nature.

Here, we propose a transparent approach yielding a so-
lution with analytic accuracy according to the requirements
stated below.

SVD ANALYSIS

Singular value decomposition states a theorem of linear
algebra, according to which any M ×N matrix A may be
decomposed into the product of three matrices:

A = U ·W ·VT .

The matrix U is of the same geometry as A, consisting of
orthonormal column vectors �Uj . W is a square N ×N di-
agonal matrix, whose diagonal elements wj are called ’sin-
gular values’. The N×N square Matrix V is orthonormal,
such that V ·VT = 1. Taking the ORM R to be decom-
posed this way, it is easy to see that the N columns �Vj of V
form an orthonormal basis V of the N -dimensional correc-
tor space, which, when multiplied to R, result in an orbit
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wj
�Uj . Thus, the columns �Uj describe an orthonormal N -

dimensional orbit base U , linked to V by the metric tensor
W. Obviously, those base vectors �Vj , whose singular val-
ues wj are close to zero, represent corrector combinations,
whose effect on the monitored orbit is very small. If such
singular values exist, the matrix is referred to as being ’ill-
conditioned’ or ’singular’ if wj = 0 for any j. Now, given
an orbit difference �u0 to be corrected, we may project this
vector into U to receive �U0 = �U ′

0. By multiplying each
component j of �U0 by either its reciprocal metric factor
w−1

j for wj > wcut or zero otherwise,we get the corre-

sponding representation �V ′ in V , excluding the chosen null
space by definition of wcut. Using the basis representation
�Vj , �V ′ is then translated into real corrector settings �ϑ′ re-
quired to reproduce �u′0 in real orbit space. This procedure
is easily represented in Matrix form in a more general way:

�ϑ′ = V · �V ′

= V · [diag(1/wj)]wcut · �U0

= V · [diag(1/wj)]wcut ·UT · �u0

= R� · �u0

The last line is to be understood as a definition for R�.
’[diag(1/wj)]wcut ’ denotes a N ×N diagonal matrix with
diagonal elements 1/wj for wj > wcut or zero otherwise.

CORRECTOR LIMITATIONS

Obviously, corrector limitations restrict the available
corrector space, thereby the accessible orbit range. For
the purpose of visualisation of the geometries involved, we
shall have a look at a two dimensional example assuming
two correctors to be used for orbit correction, see figure 1.
Their orbit responses �R1,2 may have a higher dimension-
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Figure 1: Geometry of corrector limitations in the or-
thonormal range U of R

ality than two, but their representation �C1,2 in U is again
two dimensional. Given their allowed span of kicks within
ϑlow

1,2 ≤ ϑ1,2 ≤ ϑhigh
1,2 , the physically accessible domain

forms a diamond in two dimensions (shaded in figure 1),
and a hyper dimensional parallelepiped in general. Note,
that the origin of U is defined by the actual corrector set-
ting, not by the actual orbit. The stated problem arises,

once �U0 comes to lie outside this diamond, so that one or
both correctors are incapable to access this point. The best
one can do instead is to find the point closest to �U0 on the
surface of the diamond – or the parallelepiped in general.

The Algorithm

We shall call the sought surface point �US . The set of
limiting hyper planes, which are exceeded by an orbit point
�U (m) shall be called K(m) for a given step of iteration m.
The proposed algorithm assumes

1. �US to lie within at least one plane in K(m) for any m,
unless K(m) is the empty set;

2. that the plane k(m) ∈ K(m) with the largest Euclid-
ian distance ∆(m)

k(m) to �U (m) is such a plane:

∣
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∣∆(m)

k(m)

∣
∣
∣ ≥

∣
∣
∣∆(m)

j

∣
∣
∣ ∀j ∈ K(m). (3)

The iteration starts off using �U (0) as a starting point (see
below). Each step m of the iteration will project �U (m) per-
pendicularly into the plane k(m). The problem is then re-
stated within this reduced dimensionality until �U (m) = �US .
Figure 2 illustrates this reasoning in two dimensions: for
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Figure 2: Two dimensional examples to illustrate the path
of iteration at sharp and obtuse angles. Bold arrows denote
the path chosen by the iteration, semi-bold arrows that of
a possibly mistaken path, yielding either to the same or an
objectionable point. See text.

the case of a sharp angle (a), the order of projections is
irrelevant, whereas (b) reveals areas for an obtuse angle,
where the order of projection is indeed of relevance: start-
ing off beyond both planes 1 and 2, projection into plane
1 immediately yields the desired surface point, whereas a
projection into plane 2 with a successive projection into
plane 1 yields in an objectionable point.

This algorithm may also be applied to a weighted set of
equations:

G ·R�ϑ = G�u0, (4)

with a diagonal M × M weight matrix G. U is still iso-
metric as required by the geometric methods to follow.

Implementation

The following approach assumes that

rank(R) = N, (5)
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hence all corrector representations �Cj are linearly indepen-
dent for all j = 1 . . . N . From computational considera-
tions this is typically given for wj > 10−18 ∀j. Each lim-
iting plane j is then uniquely defined by its normal vector
�n

(0)
j and its distance d

(0)
j to the origin. �n

(0)
j is character-

ized by being orthogonal to all other corrector representa-
tions �Ci�=j , and enclosing some angle �= ±π/2 with �Cj .
Because of (5), this is a squared set of non-singular linear
equations with a unique solution, which is to be solved for
a vector �n

′(0)
j pointing into the same direction as �n

(0)
j . We

then receive the sought normal vector by normalisation:

�n
′(0)
j =

(

RT U
)−1

(0, . . . , 0, 1, 0, . . . , 0)T

→ �n
(0)
j = �n

′(0)
j ·

∣
∣
∣�n

′(0)
j

∣
∣
∣

−1

.

Using the known space point ϑlim
j

�Cj within this plane,

we obtain d
(0)
j = ϑlim

j �n
(0)
j

�Cj , with the index ’lim’ cor-
responding to the upper or lower limit under considera-
tion. In order to obtain a starting point within the cho-
sen range of R which is spanned by the vector set �Ui

with wi > wcut, we simply zero those components i
of �U0 for which wi < wcut. Let �U (1) be the result of
this action. For each step m ≥ 1 of the iteration, k(m)
is determined by evaluation and comparison of the dis-
tances ∆(m)

j within the intersection of the chosen range
with previously projected planes. To do so, we need to re-
duce the normal vectors of planes under investigation by
the collateral dimensions N (m) spanned by the vector sets
{�Ui|wi < wcut} ⊗ {�nk(n)|1 ≤ n < m}. Since these
vectors are generally skewed, we need to create an orthog-
onal basis of N (m) first. Again, SVD is used to decompose
a matrix N(m) made up of the column vectors spanning
N (m). The resulting matrix U(m)

N is then used to project
the normal vectors into the remaining subspace, so that the
sought distances are found to be (see figure 3):

�n
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(
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j −U(m)

N
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The periods (. . .) within the bars replace the parenthesized
term left to it. By equation (5), cos θ

(m)
j is guaranteed to be

non-zero. k(m) is then determined according to equations
(3) and (6). Ultimately, �U (m) is projected orthogonally into
k(m):

�U (m+1) = �U (m) − �n
(m)
k(m)∆

(m)
k(m)

The iteration ends, once K(m) is the empty set.
While it is seldom to occur that an ORM becomes truly

singular1, certain situations exist, such that the matrix un-
der consideration will become numerically singular2. In-

1since usually the number of evaluated monitor readings M is equal
or greater than the number N of correctors to be used

2E.g., the columns of the matrix might be constructed such, that they
already fulfill side conditions, such as the closeness of a local orbit bump.

subspace

co
ll

a
te

ra
l

d
im

en
si

o
n
s

lim
iting

plane j

�j

nj
(0)

nj
(m)

U
(m)

(m)

�j

(0)

�j

(m)

d j
(0

)

N
(m)

Figure 3: Determination of the distance ∆(m)
j of �U (m) to a

plane j within a subspace of U .

stead of rendering the above procedure useless, it proved
an easy procedure to simply add some noise to the matrix
elements; just enough to guarantee the necessary precision
of the result but lifting the smallest singular values above
∼ 10−18, depending on the numerical stability of the com-
putational implementation.

Note, that for the special case of nullity(R) = 0 (⇔
wcut < wj , ∀j) and a homegeneous weight matrix G =
λ1 (λ being some real number), this algorithm may also be
carried out in the real orbit space u instead of U .

RESULTS

The above procedure has been implemented into the
SVD based orbit correction at DELTA with great suc-
cess. Since at DELTA the ORM is overdetermined for each
plane, it is reasonable to add weights to relevant monitors.
Thus, the condition number as the ratio of the largest to
the smallest singular value is easily raised to about 106,
such that the epiped in U becomes highly distorted due to
the metric of singular values. In contrast to the method of
successive corrector limitations as stated in the introduc-
tion, the use of the presented algorithm predicts a reduc-
tion of the orbit deviation �u0 for the vast majority of tested
circumstances, while strictly obeying the restriction of the
null space. As a result, orbit correction has become very
stable, even with up to∼ 10 correctors at their limits under
test conditions (usually up to ∼ 3 under real conditions).
However, by successive increase of the chosen rank(R), the
distance of �U (0) to �US does not always decrease for a given
�u0, as indeed it should. At the moment it is not understood,
wether these observations are a matter of the implementa-
tion or the stated assumptions regarding �US not applying to
the closest point on the epiped to �U (0).

REFERENCES

[1] D. Schirmer et al., ”Status of The Synchrotron Light Source
DELTA”, EPAC’04, Lucerne, 2004

[2] G. White et al., ”A Hybrid Numerical Method for Orbit Cor-
rection”, PAC’97, Vancouver, 1997

Proceedings of EPAC 2004, Lucerne, Switzerland

2570


