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Abstract

A charge conserving algorithm for the simulation of
Space Charge Limited emission from conducting surfaces
is proposed. The method is based on a subcell resolu-
tion approach, which allows of imposing accurate charge
conservation on emission boundaries. The paper concen-
trates on the simulation of three dimensional structures
with curved emission surfaces, for which the application
of the presented method is particularly useful. Validation
studies are performed for a cylindrical diode and for an
emission strip of finite width. As an application example,
the simulation of an electron gun of Pierce type is given.

INTRODUCTION

Space Charge Limited (SCL) emission is a basic mech-
anism of electron injection in high-power microwave de-
vices and particle accelerators. The interest on the of space
charge field effects upon the emission process is related to
the actual efforts in the development of high current elec-
tron sources, such as modified Pierce guns and field emit-
ter arrays, involving complex, fully three dimensional ge-
ometries. While the basic SCL regime in one dimension is
analytically described by the Child-Langmuir law, the 3D-
characterization of the limiting current, however, remains
accessible only to numerical simulation tools.

A typical simulation of SCL emission consists of the
coupled computation of the particle equations of motion
and that of the electromagnetic fields on a computational
grid. Orthogonal mesh discretization techniques seem to
provide a better simulation framework than finite-element
and boundary-element discretizations, because of their ca-
pability of handling a large number of unknowns and to
the efficiency of particle tracking algorithms involved. The
principal difficulty on applying orthogonal mesh discretiza-
tion, however, is related to the modeling of curved emis-
sion boundaries. Most of the simulation codes avoid deal-
ing with boundary charges and fields by introducing a vir-
tual diode of finite width, for which the one dimensional
Child-Langmuir law is locally applied [1]. Unless the gap
width associated with the virtual diode is very small, this
approach may fail to converge to the right solution when
strongly curved emission surfaces and emission corners are
involved. The problem is thus stated as, how to provide for
accurate emission currents for arbitrary source geometry,
while preserving the simulation efficiency of the orthogo-
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nal mesh discretization. In this paper a boundary conformal
subcell resolution technique is applied on emission cells for
imposing charge conservation in the presence of emission
currents. The method avoids completely the need for a vir-
tual diode and the treatment of curved emission surfaces
and emission corners is naturally embedded into the charge
conserving algorithm.

PROBLEM STATEMENT

SCL emission occurs when the charge density of elec-
trons extracted from a conducting emission surface by an
externally applied electric field becomes sufficiently large
to drive the total field on the emission surface to zero.
The process depends itself on the applied fields, since the
electron paths are determined by the electromagnetic field
forces. The equations of motion of an ensemble of N par-
ticles is given by

dri

dt
=

pi

m
,

dpi

dt
= e

(
Ei +

pi

m
×Bi

)
, (1)

for i = 1 . . . N , where e is the electron charge, m is the
electron mass, and ri and pi denote the electron posi-
tions and momenta, respectively. The electric and magnetic
fields, Ei and Bi evaluated at the position of the i-th par-
ticle, contain the contribution of external field sources as
well as that of the space charge distribution. Introducing a
scalar potential ϕ, the equations for the space charge field
in the electrostatic approximation become,

E = −∇ϕ , ∇(ε∇ϕ) = − 1
ε0

N∑
i

e δ(r − ri) , (2)

where ε is the relative permittivity of the medium. The set
of coupled equations is completed by specifying boundary
conditions for the electrostatic field and initial conditions
for each of the electron trajectories. When SCL regime
is established, both, tangential and normal field compo-
nents on the emission surface must vanish. Applying these
boundary conditions directly to the solution of (2) for an ar-
bitrary charge distribution, however, leads to an overdeter-
mined set of differential equations. Therefore, a particular
space charge distribution must be selected so that, impos-
ing either of the boundary conditions to the solution of (2),
implies vanishing of the total field on the emission surface.
In other words, the solution of the SCL problem consists
in selecting appropriate initial conditions for the emitted
electrons in (1) such that a solution of (2) with vanishing
electrostatic field on the emission boundary exists.
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NUMERICAL PROCEDURE

Equations (2) are discretized in space using the Finite
Integration Technique (FIT) [2]. The technique uses an
orthogonal doublet of staggered grids, with grid poten-
tial values Φi defined on the primary grid nodes. Denot-
ing,

��

d = (
��

d1,
��

d2, . . .)T the vector of electrostatic fluxes
through each of the elementary facets of the dual cells, the
discrete equations counterpart to (2) read,

��

di = −
∫∫

∆Ai

ε(∇ϕ) · dA , S
��

d = q , (3)

where S is the discrete div-operator, q is the vector of total
charge contained in each of the dual cells and ∆Ai is the
area element corresponding to the i-th dual cell facet. The
flux integrals appearing in (3) are evaluated using a bound-
ary conformal approach [2], which accounts for the ex-
act shape of the boundary surface within inhomogeneously
filled cells containing material transitions.

Given the solution of (3) for the space charge fields on
the grid, a solution of the equations of motion (1) can be
found by integrating the trajectories of a set of computa-
tional particles using a standard PIC method. The resulting
charge distribution is then used for updating the electro-
static field in (3). Self-consistent space charge fields and
particle trajectories are obtained by repeating this proce-
dure in a coupled manner as described in [3].
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Figure 1: Layout of papers.

The challenge of the SCL emission modeling, however,
consists in assigning appropriate charge and initial veloc-
ities to the emitted particles as they are injected into the
computational domain. Since the equations of motion (1)
are completely determined by the initial conditions of the
particles, if a SCL solution exists, there will be a unique
set of such initial conditions which correspond to this solu-
tion. The algorithm proposed here, determines the charge
of the emitted particles by imposing conservation of charge
within the partially filled, dual grid cells adjacent to the
emission surface (c.f. Fig. 1). Integrating Gauß’ law over
the volume of such a cell yields,

1
ε0

Qe =
∑

i

��

di − 1
ε0

∑
p

qp . (4)

The space charge considered in (4) is composed of the par-
ticle charges qp already resident in the cell volume, and of

an additional term, Qe, corresponding to the charge emit-
ted from the surface during an iteration step in the simu-
lation. Since by virtue of the SCL emission condition, the
normal field component on the emission surface vanishes,
only grid fluxes

��

di, defined on the faces of the emission cell
contribute to the total flux in (4). Assuming that,

��

di are the
flux solutions with vanishing tangential field components
on the emission boundary, Eq. (4) can be interpreted as
the determining condition for the emission charge Qe, such
that also the normal field component vanishes, as required
by the SCL condition.

Note, that exact area and volume elements are employed
in the implementation, thus, exact charge conservation in
the boundary cells is achieved. The accuracy of the method
is, therefore, completely determined by the accuracy of the
discrete field solution. In particular, no approximation to
the geometry of the emission surface needs to be done, as
opposed to the virtual diode technique where a piecewise
planar emission surface is assumed.

Two more remarks regarding the accuracy of the above
algorithm compared to the virtual diode approach are in or-
der. First, the application of the method is independent of
the geometry of the emitting surface. As special but im-
portant cases consider the SCL emission from corners and
emission tips. Here, the 1D-Child’s law used in the virtual
diode technique does not apply even for very thin diode
gaps. Second, since the algorithm only predicts the emitted
charge, there is a freedom of choice in initializing particles
with arbitrary velocity. This is particularly important in the
modeling of hot cathodes, where the current enhancement
resulting from the particle thermal velocities can be easily
accounted for in the numerical simulation.

VALIDATION AND EXAMPLES

Cylindrical Diode

As a first validation example, the 3D-simulation of SCL
emission in a cylindrical diode is considered. The analyti-
cal solution for the current density at the cathode is given
by, Jc = 2.336 · 10−6V

3/2
a /(RaRcβ

2
c ), where Va is the

diode voltage, Ra and Rc are the radii of anode and cath-
ode, respectively. The corrective term βc = β(Rc) is ob-
tained by the solution of the differential equation,

3β2r2 d2β

dr2
+ r2

(
dβ

dr

)2

+ 7βr
dβ

dr
+ β2 − 1 = 0 , (5)

which can be evaluated with a symbolic mathematical
package. Similar expressions can be written for the po-
tential and charge density in the diode gap (c.f. [4]).

Numerically computed curves for the charge density in
the diode gap, with a fixed ratio of the anode-cathode radii,
Ra/Rc = 1.5, and three different mesh resolutions are
shown in Fig. 2. The simulation results show very good
agreement with the analytical solution, even for the coars-
est mesh resolution. Discrepancy between the analytical
and numerical curves is only observed within a few mesh
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Figure 2: Computed charge density in the diode gap com-
pared to the analytical solution.

lines away from the cathode surface. Note, however, that
the analytical solution for the charge density at the cath-
ode surface tends to infinity, which explains the slower nu-
merical convergence in this region. The error in the to-
tal emission current, however, remains below 0.1% for all
three mesh resolutions.

2D-Emission Strip of Finite Width

The second example is that of an emission strip of width
w placed in a planar diode as shown in Fig. 3. If a large
focusing magnetic field is applied, the electron motion
between the diode plates may be assumed to be one di-
mensional. However, Luginsland et. al. showed, that for
this configuration significant departure of the diode current
from the 1D-law may occur [5]. The empirical law for the
total current was found to, I/ICL = 1 + 0.3145 (d/w) +
0.0004 (d/w)2, where ICL denotes the 1D-Child’s current
for the planar diode. The numerical results of the simu-
lation with different beam widths w, for a diode gap of
d = 1 cm and a diode voltage of V = 30kV, are shown
in Fig. 3. The simulations reveal the predicted current
enhancement compared to the planar diode case. As ex-
pected, an essentially higher current density is obtained at
the beam edges, in particular, for thin beam emission.

Electron Gun Simulation

A large scale 3D-simulation of an electron gun of Pierce
type [6] using the charge conserving algorithm was per-
formed. The gun contains a spherical Dispenser-cathode
with Os-coating, anode and focus electrode with an applied
voltage of V = 90kV. Additionally, a focusing magnetic
field of strength B0 = 90mT on the gun axes was consid-
ered in the simulation. Figure 4 shows the geometrical gun
arrangement and the simulated electron beam at stationary
state. A total of 1.5 mio. computational particles were used
in the simulation, corresponding to an average of 3.000 par-
ticles injected into the computational domain in every time
step. The numerically computed beam current of I = 75A
is in very good agreement with the design data given in [6].
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Figure 3: Emission strip geometry and current densities for
different beam widths.
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Figure 4: Gun geometry and computed electron paths. Col-
ors scale to the charge carried by computational particles.

CONCLUSIONS

A 3D-gun code based on a charge conserving algorithm
for the simulation of SCL emission was presented. The
method shows better accuracy and performance than con-
ventional techniques. Two validation examples were given
i) the three dimensional simulation of a cylindrical diode
and ii) the simulation of a planar emission strip of finite
width. In both cases, excellent agreement with the corre-
sponding semi-analytical solutions for the limiting current
was found. The efficiency of the code was demonstrated in
simulation of electron beam emission in a Pierce type gun.
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