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Abstract

Based on the moment approach, V-Code is implemented
to simulate charged particle beam dynamics in linear ac-
celerators. Its main aim is to perform elementary studies in
those cases when the beam can be considered as a whole
thus making the motion of individual particles negligible
in the overall view. Therefore, an ensemble of particles
can be well described by the moments of its phase-space
distribution and the regarded order influences consequently
the achievable accuracy as well as the computational effort.
Since the well known moment equations generally are not
closed, a technique to limit the number of involved mo-
ments has to be applied. So far all the moments up to the
second order have been considered whereas higher order
moments were truncated. As a further step towards higher
accuracy, the influence of higher order moments has to be
investigated. For this reason additional fourth-order equa-
tions are implemented into the V-Code and the achieved re-
sults are compared with previous second-order-based ones.

INTRODUCTION

Detailed numerical simulations of charged particle beam
transport including space charge fields and radiation ef-
fects are generally computationally expensive and hence
extremely time consuming. In order to perform faster anal-
ysis of such significant beam characteristics like averaged
particle positions and momenta, a simplified model based
on the moments of the underlying charge distribution func-
tion can be employed. Programs which utilize the so-called
Ensemble Model are typically used for fast online simula-
tions or in optimization processes where a lot of parameters
have to be regarded for detailed studies.

ENSEMBLE MODEL

The time evolution of a particle density distribution func-
tion f is usually carried out in the space of coordinates and
momenta but it can also be systematically formulated us-
ing FOURIERs theorem. Instead of considering the density
function of the individual particles itself, it is possible to
apply a multidimensional transformation of the particle dis-
tribution function and operate preferably in the FOURIER

space. This procedure leads to an approach which intro-
duces different kinds of moments of somehow locally ar-
ranged particles and therefore does not need a description
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of the whole ensemble using lots of discret distributed par-
ticles.

Since the principal behaviour of the Ensemble Model can
still be traced using a simplified description, it is convenient
to limit the derivation of the method to the 2D case. All
necessary relations can then be obtained for the real model
by expanding the corresponding fundamental equations to
the 6D space. First of all the 2D-FOURIER transformation

F (u, v) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y) ej(ux+vy) dxdy

with the kernel exponential function expanded as a power
series in a quite common way is considered. Due to the
fact that the infinite expression is uniformly convergent, the
order of summation and integration can be interchanged

F (u, v) =
∞∑

k=0

∞∑
l=0

(ju)k

k!
(jv)l

l!

∫ ∞

−∞

∫ ∞

−∞
f(x, y)xkyl dxdy

︸ ︷︷ ︸
Mkl

and the resulting terms are arranged in a proper way. The
FOURIER transformed function is therefore given by

F (u, v) =
∞∑

k=0

∞∑
l=0

jk+l

k! l!
Mkl ukvl

Mkl =
∫ ∞

−∞

∫ ∞

−∞
xkyl f(x, y) dxdy ,

where the coefficients Mkl = < xkyl > are the moments
of the distribution function. In practice the series are not
expanded to infinity but are rather truncated at a given
maximum order. The approximated FOURIER transformed
function

F̃ (u, v) =
M∑

k=0

M∑
l=0

jk+l

k! l!
Mkl ukvl

is then used in a computer code to describe the characteris-
tics of a real particle beam.

In most cases it is sufficient to consider the different
kinds of moments without taking into account the actual
particle distribution. This is due to the fact that the mo-
ments precisely describe such physical identities like mean
values or variances.

Usually, the moments are given in different forms. To-
gether with the already introduced raw moments with
weighted monomials as integrands, the centralized mo-
ments with shifted coordinate systems are also in use. All
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raw moments of the distribution function depend on the
real location of the particles and they are typically used
to describe the averaged positions, whereas the centralized
moments are commonly translatory invariant and therefore
employed to determine the shape of the particle distribution
function regardless of the actual position.

The time evolution of either raw or central moments can
then be derived by integrating the first order differential
equations

∂ <µ>

c ∂t
=

∫
∂ µ f

c ∂t
d�rd�p =

∫
(f

∂ µ

c ∂t
+ µ

∂ f

c ∂t
) d�rd�p .

The right-hand side of this equations can be rewritten using

∂ µ

c ∂t
= grad<�r>(µ) · ∂ <�r>

c ∂t
+ grad<�p>(µ) · ∂ <�p>

c ∂t

∂ f

c ∂t
= grad�r(f)· �p

γ
+ grad�p(f)·

�F

m0c2
+ f div�p(

�F

m0c2
)

with the relativistic factor γ and the applied forces
�F = dm�v/dt. Partial integration together with a proper
ordering of the different integrals allows then to rewrite
the fundamental differential equations in the more compact
form

∂ <µ>

c ∂t
= < grad<�r>(µ) > · <

�p

γ
>

+ < grad<�p>(µ) > · <
�F

m0c2
>

+ < grad�r(µ) · �p

γ
> + < grad�p(µ) ·

�F

m0c2
> ,

which, however, cannot be used directly for a systematic
implementation. In order to proceed, it is necessary to ex-
press the right-hand side in terms of the time-dependent en-
semble parameters only, i.e. the underlying moments. This
is achieved by providing a series expansion of 1/γ as well
as by a series expansion of the applied forces �F in a given
operating point and utilizing a truncation which is strongly
related to the regarded order of moments.

If the energy spread is small enough compared to the
mean energy of the whole particle ensemble

γrms =
√

<γ2 > =
√

1+<p2
x >+<p2

y >+<p2
z > ,

it is reasonable to use just a linear approximation of 1/γ;
in all other cases higher order approximations are required.
The series expansion for the forces can be formally per-
formed by dividing them into two parts

• internal space charge motivated forces and

• forces due to external fields,

the latter being typically generated by RF-cavities or any
type of magnet for example.

The external fields vary along the whole beam line, but
due to the local structure of the bunched beam in an RF-
accelerator the desired series expansion in the vicinity of
the particles nevertheless can be carried out.

IMPLEMENTATION

In order to implement an algorithm based on the ensem-
ble model, a proper differential equation for each involved
ensemble parameter has to be derived. Starting from the
given fundamental differential equations, it is necessary to
calculate analytically partial derivatives, to achieve formula
expansions and to rearrange them in a proper way. This al-
lows to rewrite the equations in such a form that they can
be handled by a more general time integration process.

This important part can be done automatically using a
software designed for analytical computations (e.g. Mathe-
matica, Maple). The recently developed Mathematica ap-
plication is capable to perform all the analytical calcula-
tions and subsequently hands over the systematically rear-
ranged equations to the sources of V-Code in a ready-to-use
notation.

Based on the ensemble model, the program V-Code was
developed under a C++ environment to perform fast and ac-
curate beam dynamics simulations not only for single com-
ponents but also for complete accelerator structures. The
program is designed in such a way that the whole machine
can be given as a sequence of various beam line elements
whereas the differences arise in the treatment of the applied
external fields.

The fundamental preparatory work to be done is to pro-
vide a series expansion of all the forces for each element
with respect to the center of a locally bounded charge dis-
tribution. Starting from a given expansion, the Mathemat-
ica script then automatically derives all the desired update
equations for V-Code up to an arbitrary order.

SIMULATION

To demonstrate the capabilities of the implemented mo-
ment approach, a representative test problem has to be
specified. In the following section all performed calcula-
tions are related to the PITZ gun which is currently oper-
ated at DESY Zeuthen.

The selected test system consists of a 1.5-cell RF-gun
and a subsequent TESLA 9-cell-cavity. In Fig. 1, a typi-
cal schematic diagram of the examined structure is given
to get an impession of the mechanical dimensions and the
principal arrangements of all the individual components.

Gun 9 Cell Cavity

0.0 1.6 3.0 z/m

Figure 1: Layout of the examined structure consiting of a
gun part and a subsequent TESLA 9-cell-cavity.

The operating conditions and parameters for the simula-
tion were adjusted in such a way that at the end of the gun a
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Figure 2: Simulation results for the cavity part of the examined test structure: a)-c) space charge forces are included;
d) space charge forces are omitted.

bunched beam with a minimum transversal emittance was
obtained. The bunch shape specified by the a priori deter-
mined laser profile, and the bunch charge derived from the
laser intensity are to be adjusted to approximate the real pa-
rameters. The RF-gun and solenoid settings are within the
operating range of the real machine.

The following simulations have been performed with
different computer programs employing either various or-
ders of momemts (V-Code) or individual macro particles
(ASTRA) [6]; both codes do not take into account any in-
terference with the surrounding environment.

In order to show the principal behaviour of the moment
approach, the presented results (Fig. 2) focus on the cavity
simulation while the gun part is omitted.

CONCLUSION

The illustrated diagrams emphasize the fact that moment
based codes are able to correctly simulate the behaviour of
charged particle beams in accelerator structures with real
parameters even if only lower order moments are consid-
ered. In the current version of the presented moment based
code, a linear space charge model is implemented . This
feature leads to the fact that the corresponding emittance

calculations do not agree with those that probably could
be obtained using a more accurate approach. Test calcu-
lations with omitted space charge forces illustrate that this
mismatch is not due to the limited amount of applied mo-
ments but are rather caused by the specifics of the used
space charge model.
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[6] K. Flöttmann, “ASTRA: program and user’s manual”, http://
www.desy.de/∼mpyflo, DESY Hamburg, 2000

Proceedings of EPAC 2004, Lucerne, Switzerland

2555


