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Abstract

Fixed Field Alternating Gradient (FFAG) magnetic lat-
tices with fixed, possibly high, radio-frequency proposed
for muon acceleration have unusual requirements: rela-
tive momentum swing ∆p/p of ±30%. It is not evident
whether the existing accelerator optical design codes are
sufficiently accurate for such a large momentum range. It
is of particular importance to the non-scaling designs that
relative spread of revolution periods be kept below < 10−3.
Analytic expressions for orbit displacements, tunes and
path length have been derived for thick-element models of
doublet, F0D0 and FDF triplet lattices; it is this paper’s
purpose to compare these with values computed by the dif-
ferential algebra (DA) tool COSY. The mutual agreement
of results from independent sources will serve to validate
them both.

MODEL AND FORMULAE

Trbojevic et al[1] compared analytic formulae for a sin-
gle cyclotron sector against lattice tools. Here that inves-
tigation is extended to the simple lattices considered for
non-scaling FFAGs[3]. Analytic formulae for the closed
orbits, path length, tunes and betatron functions have been
obtained; these can serve as basis for verification of com-
puter codes. As a mathematical necessity, the derivation as-
sumes that elements are either sectoral combined-function
magnets or parallel-faced quadrupoles; and both with the
entrance and exit faces perpendicular to the reference tra-
jectory. The method depends on the fact that for each
momentum there is an arc-of-circle orbit through the sec-
tor(s) which is an exact solution of the equations of motion;
and that an expansion may be made about each of these to
match the orbit to the remainder of the lattice. The calcula-
tion has two components: (i) find the local arc orbits; and
(ii) solve a matrix equation for the global closed orbit vec-
tor. Momentum is retained as a free variable throughout.

Local arc Orbits

Let momentum p ≡ m0γuu, and bending radius be ρ.
Further let subscripts c, u denote reference and general tra-
jectories, respectively. The magnet field is Bz(ρ) = B0 +
B1(ρ − ρc) where B0, B1 are the dipole and quadrupole
components, respectively. Equating momentum to bend-
ing, gives (p− pc) = (ρ− ρc)(B0 + B1ρ) with solution:

ρu ≈ ρc + (p− pc)/B −B1(p− pc)2/B3 + . . . (1)
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B ≡ (B0 + B1ρc) determines whether the radii increase or
decrease with momentum. Here ρc is the bending radius at
pc. If B < 0, then arcs of higher momenta are at smaller
radii than those of lower momenta; if B > 0, the situation
is reversed. For good momentum compaction |B| should
be as large as possible, i.e. |B1ρc| � |B0|. The formulae
can be generalized to nonlinear field index.

Let r,u,B be position, momentum and field vectors, and
∆r, ∆u, ∆B be their increments. If one expands about the
family of reference orbits, one obtains the equation:

γud∆u/dt = (q/m0)[∆u ∧B + (u + ∆u) ∧∆B] . (2)

Linear ODEs result if one drops the second order term
∆u ∧ ∆B. The relative fractional error incurred in this
truncation is of order x/ρc, that is closed orbit offset x di-
vided by magnet bending radius. The computer tool COSY,
retains the second order term and is in principle more ex-
act. COSY differs also in the treatment of the magnetic
field; it recognizes that the combined function magnet will
also have a body sextupole[4] component of order x/ρ c.
The COSY[5] calculations will be considered to be exact.

Global Closed Orbits

Figure 1: Layout of F0D0 cell with D-sector and F-quad.

We illustrate the method by the simple example of a
F0D0 cell with D-sector and F-quad, and introduce the
quantities: l0 is the drift length; lf , ld are F-quad and D-
sector half-lengths; k =

√
B1c/p where B1 is the gradi-

ent; σ = k× l. We transform the input vector x0 = (x0, 0)
from the entrance of the half F quadrupole, to the exit of
the half D sector using the matrices D,F,O. Notice that at
entrance to the D sector, the radial coordinate jumps by an
amount δr = (δρ, 0) where δρ = (ρu − ρc) – because of
difference between pu and pc coordinate systems. Hence
the matrix equation:

(x, x′) = Dx(krld) [−δr + O(l0) ·Fx(kf lf ) · x0] . (3)
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The value of x0 that will make x′ = 0 is the closed orbit.
From this value, the displacement and divergence may be
obtained at any other point in the cell by the appropriate
matrix multiplication. At the centres of the full F and full
D quadrupoles we find the displacements:

xf = (ρc − ρu)µr sinh σr

/
D w.r.t. ρc (4)

xd = (ρc − ρu)kfρcωu sinσf

/
D w.r.t. ρu (5)

D = kfρcωu coshσr sin σf

− µr sinh σr(cos σf − kf l0 sinσf ) .

The working is increasingly more complex for triplet and
doublet cells, and particularly so when both the D and F are
combined function magnets. Nevertheless, the analgous
expressions have been found, and from these path length
was obtained by Pythagoras’ theorem and integration.

MUON LATTICES

We demonstrate the results of this technique using the
example of a 10-20 GeV/c muon accelerator proposed as
part of a US neutrino factory[2]. Parameters for F0D0 (F),
doublet (D) and triplet (T) lattices are given below; cases
with a single D-sector (1) and with D- and F-sectors (2)
are considered. In all cases the long/short drift-space is
2/0.5 m. 7.5 MeV of (peak) acceleration is installed in ev-
ery cell; the radio-frequency is 200 MHz.

Type F1 F2 D1 D2 T1 T2
# 96 95 90 88 77 81
L 5.70 5.70 4.80 4.73 5.80 5.75
C 547 541 432 416 447 466
ld 1.14 1.14 1.52 1.45 1.76 1.73
lf .561 .563 .784 .781 .519 .512
B0d 3.53 3.97 2.92 3.72 3.04 3.69
B1d -21.1 -21.2 -22.3 -23.6 -19.9 -20.6
B0f 0 -1.40 0 -1.73 0 -2.09
B1f 40.7 40.5 40.3 41.1 38.1 38.9
ρd 17.4 14.2 21.7 15.2 21.6 14.8
ρf – -40.2 – -32.9 – -26.1
pc 18.4 16.9 19.0 17.0 19.7 16.4

Units in the table are # cells, cell length L (m), circumfer-
ence C (m), magnet full lengths ld,f (m), fields B0d,f (T),
gradients B1d,f (T/m), radii ρd,f (m), pc (GeV/c).

In figures 3,4,5,6,8,9 the solid curves indicate values
computed analytically, while the dashed curves denote val-
ues computed from an 8th order COSY map.

For cells with a D-sector and F-quad and pc ≈ 19 GeV/c,
the maximum anticipated errors are of order 0.5%. The
linearized expansion is valid over a wider momentum range
than the machines intended operation as shown in figure 3.

For cells with D- and F- sectors and pc ≈ 16 GeV/c the
reference momentum is better centred (i.e. closer to the
mean of 15 GeV/c). Normally the more symmetric expan-
sion would result in greater accuracy. However, the reverse
field in the F-sector and the stronger field in the D-sector

to compensate implies a smaller radius of curvature and
so larger relative errors. Thus, overall, the accuracy over
the operational range 10-20 GeV/c is similar to that above.
Fig. 4 summarizes the pathlength comparison.

Figure 2: Expected errors for muon lattices F1,D1,T1 (left)
and F2,D2,T2 (right).

Figure 3: Orbit offsets in F-quad for lattices F1,D1,T1
(left), and in F-sector for lattices F2,D2,T2 (right)

Figure 4: Pathlength variation in muon lattices F1,D1,T1

Figure 5: Pathlength variation in muon lattices F2,D2,T2

To summarize, for the high energy muon lattices with
small orbit offsets and large magnet bending radii, the an-
alytic results and the COSY DA maps are in excellent
agreement upon the values of orbit offset and pathlength.
Figures 6 show this agreement extends to the values of
the betatron tunes. The solid/dashed curves denote ana-
lytic/COSY values; they are almost indistinguishable.
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Figure 6: Tunes in muon lattices D2 (left) and T2 (right)

ELECTRON MODEL LATTICES

The non-scaling lattices have two novel operational
features: fast crossing of betatron resonances and asyn-
chronous acceleration relying on libration. It is proposed
to investigate these features in a 10–20 MeV/c electron
model. This would have long/short drift spaces of 10/5 cm,
and utilise 2.86 GHz RF with 0.25 MV of acceleration per
cell. Example parameters are given below.

Type F1 F2 D1 D2 T1 T2
# 36 34 33 32 29 28
L 40 40 33 33 41 41
C 14.4 13.6 10.9 10.6 11.9 11.5
ld 6.63 6.66 8.51 8.44 10.0 10.2
lf 3.37 3.34 4.49 4.56 2.99 2.91
B0d .158 .178 .139 .163 .138 .161
B1d -5.23 -5.34 -5.60 -5.77 -4.77 -4.94
B0f 0 -.062 0 -.072 0 -.092
B1f 9.49 9.52 9.75 9.57 8.973 9.07
ρd 38.0 29.7 44.7 32.8 46.3 30.5
ρf – -85.3 – -74.5 – -53.3
pc 18.0 15.9 18.6 16.0 19.2 14.7

Units in the table are # cells, L (cm), C (m), full length
ld,f (cm), B0d,f (T), B1d,f (T/m), ρd,f (cm), pc (MeV/c).

The lattices have a small number of cells and large bend
angles in the magnets, and the ratio of the closed orbit off-
sets to the bending radiii are comparatively large. These are
conditions which challenge all latice/optics design tools.
For example, the COSY maps do not converge over the en-
tire expansion range (±40%) unless maps of order higher
than 6th are used; and if fewer than � 25 cells are used,
then maps higher than 7th order are required. Figure 7
shows the anticipated relative fractional errors, based on
x/ρc, to be of order 5% or more at the momentum ex-
tremes. Figure 8 shows there to be large discrepancy be-
tween COSY and the analytic pathlength formulae; and the
same is true of the betatron tunes and lattice functions.

CONCLUSION

Using Mathematica[6], analytic formulae for the closed
orbits, path length, tunes and betatron functions have been
obtained for the simple lattices considered for non-scaling
FFAGs. The relative fractional error is anticipated and con-
firmed to be of order ε ≡ x/ρ. For ε sufficiently small,
COSY and the formulae are in excellent agreement; e.g.

the formulae are eminently suitable for design of the high
energy muon rings. However, for rings with large bend an-
gle, such as the electron model, the formulae are forced
to operate outside their domain of applicability leading to
appreciable errors. Moreover, the same is true of low or-
der COSY maps. This observation gives reason to reiterate
that caution is warranted[4, 5] when applying optics design
codes to small rings.

Figure 7: Expected errors in electron lattices F1,D1,T1
(left) and lattices F2,D2,T2 (right).

Figure 8: Closed orbit offsets in electron lattices F1,D1,T1
(left) and lattices F2,D2,T2 (right).

Figure 9: Pathlength variation in electron lattices F1,D1,T1
(left) and F2,D2,T2 (right).
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