
§Work supported in part by the US Department of Energy Contract DE-AC03-76SF00515 and Office of Basic Energy   
   Sciences, Division of Chemical Sciences. 

SPEAR 3 COMMISSIONING SOFTWARE§  

J. Corbett, G. Portmann, J. Safranek and A. Terebilo 

Stanford Linear Accelerator Center/Stanford Synchrotron Radiation Laboratory                                                         
Stanford, CA 94309, USA

Abstract 
  The short SPEAR 3 startup time required pre-

commissioned software for machine setup, beam 
measurements and data analysis. To accomplish this goal, 
we used Matlab with the Accelerator Toolbox (AT), the 
Channel Access Toolbox (MCA) and Middle Layer 
software to integrate code and streamline production. This 
paper outlines the software architecture, describes the 
Middle Layer component and provides examples from 
SPEAR 3 commissioning. 

INTRODUCTION 
    The SPEAR 3 upgrade required a re-write of the 
control software with little opportunity to test with live 
beam [1]. For the physics part, we looked for a 
programming language with strong analytical and 
graphical capabilities, and easy-to-use syntax for non-
computer scientists [2]. The search resulted in Matlab, 
which was in already in use at SLAC/SSRL for 
accelerator control, machine simulation and data 
processing, and at the ALS for direct machine control [3]. 

Specifically, Matlab provides a combination of an 
interpretive matrix-oriented programming language with 
powerful graphics capability, built-in math libraries and 
platform independence to give a high degree of flexibility. 

As part of the SPEAR 3 project, a number of Matlab 
toolboxes were written for accelerator physics. The 
software suite includes the following: 

 
1. AT – Accelerator Toolbox for simulation [4] 
2. MCA and LabCA – Matlab-to-EPICS link [5] 
3. Middle Layer – easy connection to AT, MCA 

plus machine measurement library [6] 
4. LOCO (Linear Optics from Closed Orbits) [7] 
5. AT Model Server (ATMS) [8] 

 
The Accelerator Toolbox (AT) is a full 6-dimensional 

tracking code. Matlab Channel Access (MCA) provides a 
Matlab link to the EPICS channel-access library. The 
Middle Layer has three main functions: (1) to provide a 
method to group devices with a simple calling scheme for 
get and set operations, (2) to provide a library of common 
accelerator physics tasks and (3) to organize the data 
when running an accelerator. The ALS method of using 
Matlab for high-level software control provided the 
foundation for the Middle Layer [3]. 

 

Middle Layer (MATLAB)

High Level Script
and Control Applications

MCA

SPEAR 3
Channel Access

Accelerator Toolbox
Model

Simulated SPEAR 3
Model

AO AD

(Hardware)

MATLAB ENVIRONMENT

 
 

                          Figure 1: Software Architecture  
 
 

An important part of the Matlab suite is LOCO (Linear 
Optics from Closed Orbits), a Matlab version of it’s 
FORTRAN predecessor [9]. LOCO has been used world-
wide to correct linear optics in storage rings and was a 
critical component in commissioning SPEAR 3.  

Finally, the AT Model Server can be used to set up an 
EPICS ioc with Matlab running on a clock in the 
background to calculate orbits, tune, chromaticity, etc. 
Matlab software communicates with the EPICS ioc as 
usual but receives data calculated by the AT model. 

Having all five software tools in a common 
programming language is both efficient and beneficial. 
Each tool can be used independently with the Middle 
Layer acting as a central hub. Figure 1 shows how top 
level applications access AT and MCA through the Middle 
Layer. The entire Middle Layer can be ‘switched’ between 
simulator and online mode, allowing the user to 
communicate with mode-independent syntax. For SPEAR 
3, software scripts, functions and application programs 
were pre-tested in the simulation mode and switched 
seamlessly to ATMS well before hardware ioc’s were 
available. 

The architecture and interpretive code aspect of the 
software simplifies software development, machine 
control and data analysis. Furthermore, the complete 
package is largely machine-independent: connecting to a 
new accelerator requires a new set of magnet calibration 
factors, a machine-specific setup file and the AT model 
file.   

Proceedings of EPAC 2004, Lucerne, Switzerland

884



MIDDLE LAYER  SOFTWARE 
The Middle Layer provides a flexible way to access 

accelerator variables. Function calls are typically 
formatted with machine-independent Family/Devicelist 
syntax to identify specific hardware elements. Each 
parameter type is organized into groups (Families), 
subgroups (Fields), and devices (Elements). The 
combination (QF, 'Setpoint', [3,1]), for instance, refers to 
the setpoint for the first QF magnet in sector 3. The same 
combination can be used to get or set variables either in 
the simulator or online.  

The heart of the Middle Layer is a data structure 
containing Accelerator Objects (AO). The AO contains 
attributes for each Family (element indices, channel 
names, limits, etc). The AO families also contain 
hardware-to-physics unit conversion functions and 
associated conversion factors. The AO structure is loaded 
into Matlab memory for fast and easy access. 

A parallel structure, Accelerator Data (AD), contains 
directory locations, file names and basic accelerator 
parameters. The AD also resides in Matlab memory. 

Since Matlab is an interpretive language, the Middle 
Layer can be used directly from the command line, in 
short scripts or can be integrated into high-level 
application programs. All three techniques were used to 
commission SPEAR 3 and have been applied at the ALS, 
CLS and NSLS.  

 

Get/Set Functions 
The Get/Set functions communicate with the accelerator 

simulator or hardware (iocs).  The two core functions, 
getpv/setpv, simplify MCA calls and to make details of 
the control system transparent.  Both functions accept a 
variety of input formats including timing information, and 
keyword-driven options. 

 
getpv('Family', 'Field', 'DeviceList', 'Time', 'Keywords') 
setpv('Family', 'Field', 'Value', 'DeviceList', 'Keywords') 
 

At the ALS, for example, one can turn on, reset, set 
ramp rate to 10 amp/sec, and ramp the QF-family setpoint 
to 80 amp with the following sequence: 

 
setpv('QF', 'On', 1) 
setpv('QF', 'Reset', 1) 
setpv('QF', 'RampRate', 10) 
setpv('QF', 'Setpoint', 80) 

 
Alias functions to getpv and setpv are also often used: 
 

getam –  get analog monitor values 
getsp/setsp –  get/set setpoint values 
stepsp –  step setpoint values 

 
The user can also access PV names that do not reside in 
the AO database. Getpv(‘PVName’) is a valid call. 

 
 

Modes of Operation 
    The middle layer permits several modes of operation 

for each family. The simulator/online/manual mode 
allows the user to communicate with the local AT model, 
external hardware, or manually input changes from the 
keyboard. A mode override is possible on any function by 
putting the keyword 'simulator', 'physics', or 'manual'  in 
the function call.  This feature is often used to get 
response matrices from the model while working online.  

Another useful Middle Layer feature is to establish 
different operational modes.  By specifying directory 
paths and filenames in the AD, the Middle Layer can be 
set to operate in a different accelerator configuration, for 
instance, to separate developmental machine studies from 
the day-to-day operational configuration. 
 

Physical Units and Unit Conversion 
Accelerator modeling and accelerator control often use 

different units with complicated unit conversion 
functions. The control system typically operates in 
hardware units (e.g. bit count, amp) whereas the 
accelerator model uses physics units (e.g. k-value, radian). 
To update the model with the present online values, 
magnet currents are converted to k-values with the 
hw2physics function. Such conversions are often used for 
model calibration or to compute the electron beam optics. 

Conversely, model-based calculations are downloaded 
to the machine using physics2hw. For SPEAR 3, the 
magnet conversions are polynomial functions but in 
general arbitrary functions with arbitrary coefficients are 
possible. Calibration errors detected by LOCO can also be 
taken into account in these functions.  

The Middle Layer can operate in either physics or 
hardware units.  And one can override the units on any 
function by putting the keyword 'physics' or 'hardware' in 
the function call. getpv and setpv perform unit 
conversions automatically depending on mode of 
operation. 
 

Data Management 
There is a large amount of data that needs to be 
maintained to automate and optimize the running of an 
accelerator. The AO and AD data structures (already 
discussed) contain data which is accessed frequently but 
does not change very often – like EPICS channel names. 
Data that occasionally changes and does not get accessed 
often is stored in a special physics data file. Typical data 
stored in this file are golden/offset orbits, BPM gains, 
power supply gains/offsets, and coupling coefficients.  
Data which is specific to a particular accelerator state is 
maintained in separate files. Lattice saves, response 
matrices, and insertion device compensation tables fall 
into this category.  

Many Middle Layer functions also generate data.  The 
data is automatically organized in a user-specified 
directory tree and stored in a data structures which define 
how and when the data was measured.    

Proceedings of EPAC 2004, Lucerne, Switzerland

885



HIGH-LEVEL  SOFTWARE 
High-level software and applications can use Middle 

Layer functions to access to the accelerator hardware and 
model. The resulting applications are largely accelerator-
independent and can be shared between laboratories. 
Examples of shared high-level applications are 
configuration save/restore, beam-based alignment, global 
orbit feedback and control [10,11], variable monitoring 
GUIs, aperture scans, tune and chromaticity control, 
energy ramping, insertion device compensation and 
dynamic aperture scans.  

Many high level programs use a mix of pure Matlab 
and Middle Layer functions. LOCO, for example, can 
accept input data generated with Middle Layer 
measurements, processes the data in Matlab based on 
user-defined setup files, and apply the result to the 
machine with Middle Layer functions. Even more 
advanced data acquisition and analysis routines are 
progressively integrating into the Matlab softare [12]. 

ACCELERATOR MODELING 
Control systems at SLAC have a history of 

incorporating the accelerator model into the on-line 
software. The basic philosophy is simple: convert power 
supply currents to magnet k-values to produce the 
machine model, and convert k-values to supply currents 
to control beam optics. In recent years, response matrix 
measurements have been used to calibrate the model to 
the machine and vise-versa (LOCO). The MATLAB 
software suite enhances the coupling between machine 
and model, allows easy extraction of data for post-
processing and increases programming flexibility in both 
domains. 

 

 

SUMMARY 
The accelerator physics software suite developed for 

SPEAR 3 proved successful in simulation and in the 
control room. The user-friendly software and machine-
independent library have fostered a number of 
collaborations. Most scientists find the syntax quite 
intuitive making it possible for visitors to participate in 
machine development studies with minimum training on 
the host system. To date, the software has been installed 
on five machines (ALS, CLS, SPEAR, NSLS VUV and 
X-ray rings) and has received large interest from other 
laboratories. The Australian light source, for instance, is 
planning to further expand the applications library. 

For a new machine, the system can be made functional 
within a few days and fully operational in a few weeks. 
Developing a fully calibrated online model (magnet 
calibration factors, BPM errors, etc) is the most time 
consuming part of the software setup. 

ACKNOWLEDGEMENTS 
The authors would like to thank the ALS accelerator 

physics staff for a productive collaboration on LOCO and 
the Middle Layer. This collaboration helped SPEAR 3 
commissioning exceed expectations. Thanks to M. Yoon 
for many contributions and the CLS collaboration which 
led to several important software developments. 

REFERENCES 
[1] R. Hettel, et al, "SPEAR 3 Upgrade Project: The Final 

Year." Proc. of PAC, 2003, p. 235. 
[2] J. Corbett, et al, Satellite meeting on Accelerator Physics 

Software for SPEAR 3, ICAP, 1998. 
[3] G. Portmann, "ALS Storage Ring Setup and Control Using 

Matlab." LBL LSAP Note #248, 1998. 
[4] A. Terebilo, "Accelerator Modeling with Matlab Accelerator 

Toolbox", Proc. of PAC, 2003, p. 3203. 
[5] A. Terebilo, "Channel Access Toolbox for Matlab ", 

ICALEPCS 2001, San Jose, CA 
[6] G. Portmann, J. Corbett and A. Terebilo, "Middle Layer 

Software for Accelerator Control." SSRL Memo, March, 
2004. 

[7] J. Safranek, G. Portmann, A. Terebilo and C. Steier, "Matlab 
Based LOCO."  Proc. of EPAC 2002, p. 1184. 

[8]  A. Terebilo, et al, "Simulated Commissioning of 
SPEAR 3 Storage Ring", Proc. of PAC, 2003, p. 2372. 

[9]  J. Safranek, "Experimental determination of storage 
ring optics using orbit response measurements", Nuc. 
Instr. Meth., 388, 27 (1997). 

[10] J. Corbett and A. Terebilo, "Interactive Orbit Control 
Program in Matlab." Proc. of PAC, 2001, p. 813. 

 [11]  G. Portmann, “Slow Orbit Feedback at the ALS 
Using Matlab,” Proc. of PAC, 2003, p. 2373. 

[12]  C. Steier, D. Robiin, L. Nadolski, W. Decking, Y. Wu and 
J. Laskar, "Measuring and Optimizing the Momemtum 
Aperture in a Particle Accelerator." Phys Rev. E., 65 056506 
(May 2002). 

 
 

Proceedings of EPAC 2004, Lucerne, Switzerland

886


