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Abstract

An approach to fixed field acceleration using exclusively
linear optical elements was first proposed[1, 2] and suc-
cessfully developed[3, 4] to support rapid, large-emittance
muon acceleration required by a Neutrino Factory or Muon
Collider. This approach was termed, simply, a non-scaling,
fixed field alternating gradient (FFAG) accelerator. Lattices
have evolved from the simple F0D0-cell baseline first pro-
posed to a slightly more complex layout that has usually
been referred to as a triplet configuration. In this work a
methodology is developed for optimizing non-scaling lat-
tices which demonstrates that the appropriate description
is minimum momentum compaction; that is least change in
path length with momentum. This framework is then used
to generate and compare lattices for rapid acceleration as
for muon applications.

INTRODUCTION

The production, acceleration, and storage of a muon
beam sufficiently intense to drive a Neutrino Factory or
Muon Collider[5] requires multi-stage preparation. In a
neutrino factory, the ability of, or limits to, accelerating
large-emittance beams determines the specifications which
upstream systems must meet, particularly the cooling. The
downstream storage rings and experiments are presently
not the limiting constraint. Acceleration proves, then, not
only a difficult stage to develop, it becomes a pivotal one,
particularly in the path to this facility. To further compli-
cate issues, acceleration must occur rapidly because of po-
tentially heavy losses from decay. Linear accelerators are
the optimal choice in this respect, but, above a few GeV,
they become prohibitively expensive. Conventional syn-
chrotrons cannot be used because normal conducting mag-
nets cannot readily cycle in the ramping times required by
muon decay, nor do they support ultra-large beam emit-
tances. In the past, the U.S. baseline relied on recircu-
lating linear accelerators (RLAs) with separate, fixed-field
arcs for each acceleration turn. Separate arcs permit con-
trol over the path length as a function of energy, allow-
ing traversal times to be matched to the rf phase require-
ments for stable acceleration. Alternative approaches have
focused on adapting the Fixed Field Alternating Gradient
(FFAG) accelerator first developed and tested at MURA,
primarily because of its inherently large longitudinal ac-
ceptance. The Japanese approach (KEK), for example, sup-
ports a radial-sector FFAG accelerator, but primarily in the
context of a single-muon bunch and low frequency, broad-

band rf. A linear optics approach to fixed field accelera-
tion was also proposed[3] and recent breakthroughs have
resulted in a new design for a FFAG accelerator that can
support a high-frequency bunch train, or the U.S. scenario.

The first successful lattices were based on a short, �
5 m long, F0D0 cell. The cell structure was simple: a
horizontally-focusing quadrupole followed by a combined-
function, vertically focusing magnet with the elements sep-
arated by 2-3 m for the rf cavity. Alternative base structures
have since been explored[6] and a triplet quadrupole struc-
ture has been shown to improve performance relative to
the F0D0 optics, but only in a particular configuration and
strength. This paper discusses the performance issues as-
sociated with rapid acceleration and the parameters which
underlie critical behavior and differences between lattice
schemes. A thin-lens approach is developed to understand
and optimize lattices and explains the improved perfor-
mance of the so-called triplet versus F0D0. Important re-
sults include: (1) the triplet configuration is described by
a parameter set that is F0D0-like, rather than the conven-
tional focusing telescope; and (2) although the lattices re-
semble the minimum emittance lattices developed for elec-
tron rings, in this application, they represent rather mini-
mum momentum-compaction lattices.

NON-SCALING FFAGS

When acceleration is sufficiently rapid, as is the case
in muon acceleration, the beam experiences only a few
turns in the accelerator and betatron resonances do not have
to be avoided, allowing “instantaneous” crossing of reso-
nance tunes. Optical parameters can then vary with mo-
mentum and the lattice constructed solely from linear el-
ements, quadrupoles and dipoles. Linear elements in turn
imply a large transverse dynamic aperture in addition to
“unlimited” momentum acceptance. Stability over a large
range in momentum, however, requires these lattices to be
constructed from a single, simple optical structure and are,
therefore, completely periodic with no insertions or long
straight sections. The signature of fixed-field acceleration
is that the particle beam moves across the radial aperture.
The changes in orbit and traversal time are significant, lead-
ing to a phase-slippage between the beam and the rf wave-
form which eventually prevents further acceleration. More-
over, because the acceleration occurs over a submillisec-
ond cycle, the magnetic field strength and the parameters
of the radio-frequency system cannot be adjusted on a cor-
responding timescale.
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The phase-slip profile of the lattice determines the char-
acteristics of the extracted phase space and its evolution
with the number of acceleration passes. The goal of lat-
tice design, then, is to minimize phase slippage within the
constraint of fixed, high radio-frequency (200 MHz for the
U.S. Neutrino Factory scenario). Minimizing the overall
phase slip, or the overall path-length differences for dif-
ferent momenta, becomes the fundamental problem of the
lattice design. Since the lattice is completely periodic, it
is therefore instructive to examine the momentum com-
paction dependence of the base cells.

Dispersion in F0D0 optics

Momentum compaction α is defined as the relative frac-
tional change in orbit length ∆L/L for a relative change in
momentum offset ∆p/p ≡ δ, that is ∆L/L = α× δ. For a
periodic structure with cell length L,

α =
1
L

∫ L

0

η

ρ
ds , (1)

where η is the periodic dispersion function and ρ is the
magnetic bending radius. Using simple thin-lens matrices,
calculation of the maximum and minimum locations of dis-
persion and their dependence on cell properties is straight-
forward and commonly derived[7]. Their dependence on
cell properties provides insight into effective design princi-
ples for minimizing momentum compaction. The periodic
dispersion η gives the closed orbit of an off-momentum
particle and is the solution of
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where M is the usual 3× 3 transfer matrix.
In a cell with reflective symmetry, one may consider a

half cell of length l. At the symmetry points, the slopes of
all optical parameters are zero in the closed solution, and
they correspond to extrema of the dispersion. The center of
the vertically-focusing element has a minimum (η̌) and the
horizontally-focusing element has a maximum (η̂) of the
dispersion, as is clear after solving the thin-lens equations.
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The results for the conventional F0D0 cell with the bend
centered between focusing elements are:
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(4)
The corresponding results for the combined function (CF)
F0D0 with the bend centered on the vertically focusing el-
ement are:

η̂CF =
f2

l
θb , η̌CF =

f2

l
θb

[
1− l

f

]
. (5)

Here θb = l/ρ is the bend angle of the half cell.
Comparing the two equations (4, 5), it is clear that η̌ and

η̂ are smaller in the second or combined function case, not-
ing that dispersion remains positive in these lattices. One
immediately concludes from these simple equations that lo-
cating the dipole bend component in the vertically-focusing
element minimizes both dispersion and momentum com-
paction in a F0D0-based lattice design and, therefore, also
the excursion or phase slip of off-momentum orbits. Con-
versely, dispersion and momentum compaction are maxi-
mized accordingly if the dipole field is instead added to
the horizontally-focusing quadrupole. Another very im-
portant observation is that value for dispersion/momentum
compaction is strongly influenced by the focal length for
a given bend angle which, in the thin-lens approximation,
can be set at the limit of stability for the lowest momen-
tum (which corresponds to 180◦ of phase advance across
the full F0D0 cell). At the high momentum, f � l, and
l/f terms approach zero. Setting the lowest momentum
at or near the limit of stability represents the shortest focal
length, the lowest dispersion and therefore the smallest val-
ues of momentum compaction achievable for a given cell
design. For the realistic, thick-lenses design, one stays a
conservative distance away from the limit of stability; typ-
ically one reduces the focusing strength of the quadrupoles
to stay below 0.8π phase advance. The limit of stability,
however, is readily calculated for the different cell config-
urations and remains a useful benchmark of their relative
performance. These two limits determine the range in dis-
persion and values for momentum compaction between in-
jection and extraction energies.

Dispersion in FDF triplet optics

For the triplet case, which is seen to be essentially a
modified-F0D0, the long drift space is simply placed at
the center of the horizontally-focusing element thereby
splitting it in two; minimal drifts are placed between the
quadrupoles and combined function magnets (i.e. FDF-
drift-FDF-drift ...). The extrema of the periodic dispersion
are in this case:

η̂FDF = f∗θb , η̂FDF = f∗θb

[
1− D

f1

]
(6)

where
1
f∗

=
1
f1
− 1

f2
+

D

f1f2
. (7)

Here D is simply the inter-magnet spacing of the FDF
triplet, and f1 and f2 the focal lengths of the horizontally
and vertically-focusing quadupoles, respectively. Under-
standing the improvement observed leads back to the solv-
ing for the focal lengths in the limit of stability. For the
simple F0D0, the limit is f = l for a thin lens. For the
triplet with F–F spacing l, the limit depends on l/2 (for a
half cell) relative to length D. A number of cases can be
identified as follows:

f1 = D , f∗ = D (8)
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f2 = 2D for l � D . (9)

f2 = 1.4D for D = l/2 (10)

f2 = D for l = 0 . (11)

In the lattice models we have explored, l ≈ 1.5D
(f2 ≈ 1.3D). Assuming the same bend per cell and substi-
tuting these values implies that the CF F0D0 cell has about
a 50% larger momentum compaction than the triplet cell
for rings with identical design constraints: poletip fields,
magnet spacing and long drift. (These results scale as mo-
mentum increases so the momentum compaction is always
less for the FDF-triplet versus the CF F0D0 for the designs
here).

The differences are realized and accurately predicted for
optimized lattices based on these different cell configura-
tions. Examples of two 10-20 GeV lattices based on the
CF F0D0 and the FDF triplet are given in Table1.

Table 1: Parameters for 10-20 GeV non-scaling FFAGs

Parameter Triplet CF F0D0
Circumference 607 m 616 m
#cells 110 108
cell length 5.52 m 5.70 m
CF length 1.89 m 1.31 m
F length 0.32 m (×2) 0.39 m
magnet spacing 0.5 m 0.5 m
long drift 2 m 2 m
central energy 20 GeV 18 GeV
F grad 60 T/m 60 T/m
D grad 20 T/m 20 T/m
F strength 0.99 m−2 0.94 m−2

D strength 0.30 m−2 0.30 m−2

Bend field 2 T 2.7 T
Orbit swing
low momentum -7.7 cm -9.8 cm
high momentum 0 cm 3.8 cm
∆C 16.6 cm 26 cm
βxmax/βymax/ 6.5/13.8 m 14.4/11.4 m
β(injection) 6.5 m 5.8 m

The central energy, to which the orbit offsets are ref-
erenced, corresponds to the orbit which traverses the
horizontally-focusing quadrupole at the zero field point.
∆C is the total swing in path length from top to bottom
of the parabolic curve which describes the circumference
change dependence on momentum.

Electron Demonstration Model

Because the non-scaling FFAGs are newly-devised ac-
celerators, a “proof of principle” electron model is being
considered. For completeness, preliminary design specifi-
cations for comparable, optimized electron lattice are pre-
sented in Table 2. For this case, the small number of cells
and the large bend angles of the sector magnets implies
that care is demanded and higher order optics is required.

Consequently, the initial parameter sets derived from MAD
were fine tuned using the COSY optical computer program.
Once more, the triplet configuration proves superior to the
CF F0D0 as anticipated.

Table 2: Parameters for a 10-20 MeV electron machine

Parameter Triplet CF F0D0
Circumference 12.3 m 12.3 m
# cells 28 28
cell length 0.44 m 0.44 m
CF length 12 cm 9.2 cm
F length 3.5 cm (×2) 5.2 cm
magnet spacing 5 cm 5 cm
rf drift 15 cm 15 cm
central energy 19 MeV 18 MeV
F grad 7.0 T/m 6.1 T/m
D grad 3.7 T/m 3.5 T/m
Bend field 0.2 T 0.2 T
Orbit swing
low momentum -2.2 cm -2.3 cm
high momentum 3.5 cm 1.2 cm
∆C 5.3 cm 6.5 cm
βxmax/βymax 1.0/0.6 m 1.0/0.8 m

SUMMARY

The objective of minimizing momentum compaction,
leads to reducing the range of the periodic dispersion by
manipulating the location of the bending magnets. This
strategy leads first to a F0D0 cell with the bending centred
on the D-element. Further refinement leads to the split-
ting of the F-element and moving the magnets into closer
proximity, and at the same time introducing a drift for the
accelerating cavity. This strategy is born out in detailed cal-
culations of lattices intended for muon acceleration and for
an electron model of this novel type of FFAG accelerator.
The methodology developed thus far does not admit dou-
blet lattices, since these do not have reflective symmetry.
However, the doublet lattice enables shortening of one of
the drift spaces, compared with the F0D0, leading to a re-
duced path length; and will be the subject of further study.
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