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Abstract

In this paper we derive an expression for the longi-
tudinal Schottky power spectrum of a bunched beam in
an arbitrary-shape stationary rf bucket. This, in turn, al-
lows extract properties of the beam momentum distribution
function. Several examples are also given in the paper.

INTRODUCTION

The beam current in a circular accelerator exhibits a ran-
dom (Schottky) component due to its large but finite num-
ber of particles [1]. The Schottky noise signals have been a
powerful diagnostics tool in many storage rings and syn-
chrotrons. The theory of a Schottky power distribution
in unbunched as well as bunched (by a linear rf voltage)
beams is well understood [2]. In this paper we extend the
theory to beams, bunched by an arbitrary wave-form sta-
tionary rf voltage. This was needed to analyze the antipro-
ton and proton beams in the Fermilab’s Recycler ring. The
Recycler ring is a fixed-energy 8.9-GeV/c, 3.3-km antipro-
ton storage ring. The Recycler rf system employs a broad-
band cavity to bunch the beam with an arbitrary-shape rf
voltage [3]. Typically, the Recycler beam is bunched lon-
gitudinally by a barrier-bucket rf waveform. Under certain
bucket conditions, the dependence of the synchrotron fre-
quency on the particle energy becomes non-monotonic. It
complicates the Schottky spectrum derivation and interpre-
tation; we address these difficulties at the end of our paper.

ANALYSIS

The current of a bunched beam can be written in a form:

J(t) = eω0

N∑

n=1

δ2π

(
ω0t + θ(Ωn, φn + Ωnt)

)
(1)

= ef0

N∑

n=1

∞∑

h=−∞
exp

(
ihω0t + ihθ(Ωn, φn + Ωnt)

)
,

where ω0 = 2πf0 is the frequency of the fundamental rf
harmonic, N – the number of particles, θ – the azimuthal
deviation of the n-th particle from the bunch center, which
depends on synchrotron frequency, Ωn, and the initial
phase of synchrotron oscillations, φn. A well-known ex-
pansion of periodic δ-function in Fourier series is used,
generating an infinite set of harmonics; however, only a
portion of them can be actually resolved by the Schottky
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monitor. Then the spectrum is transformed by some ana-
log or digital narrow-band filter with its central frequency,
ωf , generating a signal:

Jωf
(t) =

t∫

−∞
Fωf

(t− t′)J(t′) dt′, (2)

where t is the time when the measurement is ended. The
power of this signal is:

Pωf
= R (ef0)2|Jωf

|2 = R (ef0)2 × (3)

∣∣∣
t∫

−∞
Fωf

(t−t′) dt′
∑

n,h

exp
(
ihω0t

′ + ihθ(φn + Ωnt′)
) ∣∣∣

2

,

where R is the input resistance of the spectrum analyzer.
The Schottky signal is a portion of the power associated
with individual particles (no interference), which can be
written in a form:

P (S)
ωf

= R (ef0)2
t∫

−∞

t∫

−∞
Fωf

(t−t
′
)F ∗

ωf
(t−t

′′
) dt

′
dt

′′ ×

∑

h′ ,h′′
exp

(
iω0(h

′
t
′ − h

′′
t
′′
)
) × (4)

∑

n

exp
(
ih

′
θ(φn + Ωnt

′
)− ih

′′
θ(φn + Ωnt

′′
)
)
.

Because the number of particles is very large, the sum over
n can be replaced by an integral according to the formal
scheme:

N∑

n=1

=

N∫

0

dN =

∞∫

0

N ′(A) dA

π∫

−π

dφ

2π
(5)

=
∫ ∫

N ′(A(θ, p)
)
dθdp,

where A is the action, which is the area enveloped by a
phase trajectory, and N ′(A) is the corresponding distri-
bution function. It should be taken into account also that
the bandwidth of the filter is always much smaller than the
revolution frequency, which suppresses the contribution of
harmonics with different h in Eq. (4), resulting in a general
formula for the Schottky spectrum:

P (S)
ωf

= R (ef0)2
∑

h

∫ ∫
N ′(A) dA

dφ

2π
× (6)

∞∫

0

Gωf
(t) exp

(
i hω0t + ihθ(φ+

Ωt

2
)− ihθ(φ−Ωt

2
)
)
dt,
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where

Gωf
(t) = 2 Re

∞∫

0

F ∗(t′)F (t + t′) dt′. (7)

General formula (6) can be significantly simplified in
some cases. The function G(t), oscillating with frequency
ωf , is actually negligible at t � T , where T is some char-
acteristic time of the filter: the filling time for an analog
filter, or the duration of measurements for a digital one.
With the condition ΩT � 1, Eq. (6) becomes particularly
simple:

P (S)
ωf

� RN (ef0)2
∞∫

−∞
K(ωf , p)W (p) dp, (8)

where f(p) = ω(p)/2π is the revolution frequency of a
particle with momentum p, and

W (p) =
1
N

∫
N ′(A(θ, p)

)
dθ (9)

K(ωf , p) =
∑

h

∞∫

0

Gωf
(t) exp

(
i hω(p)t

)
dt. (10)

It is easy to see that W (p) is the normalized distribu-
tion function of the bunch in momentum, and the kernel
K(ωf , p) transforms it to some distribution in frequency.
The following examples demonstrate that the kernel has a
sharp maximum, and when used in Eq. (10), separates a
part of the spectrum, where the revolution frequency multi-
plied by h, coincides with the frequency of the filter. Note
that with ω0T � 1 there in no overlapping of harmonics
with different h. Such a regime of measurement is espe-
cially convenient to recreate the instant distribution in mo-
mentum.

As a first example, consider the usual LCR filter with the
transfer function:

Fωf
(t) = exp (−∆ωf t) sin (ωf t) (11)

(in this case 1/∆ωf can be identified with the previously
used T ). With ∆ωf � ωf it gives the following function
G and kernel K:

Gωf
(t) =

1
4

exp (−∆ωf t) cos (ωf t), (12)

K(ωf , p) =
1
4

∆ωf(
hω(p)− ωf

)2 + ∆ω2
f

. (13)

The latter expression can be written in a form:

K(ωf , p) ∝ 1
π

∆pf

(p− pf )2 + ∆p2
f

(14)

where pf = (ωf − hω0)/hω′p, ∆pf = ∆ωf/hω′p. This
function tends to δ(p − pf ) at ∆pf → 0 resulting in an
exact recreation of the instanteneous momentum distribu-
tion by Eq. (8): P

(S)
ωf ∝ W (pf ). Fig.1 demonstrates the
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Figure 1: The Schottky spectrum with an LCR filter vs
pf/σp. at different ∆x = ∆ωf/h|ω′p|σp.

distortion of the original Gaussian spectrum with disper-
sion σp because of the nonzero filter bandwidth. The ratio
pf/σp is used for the horizontal axis and the relative Schot-
tky signal as the vertical for various ∆pf/σp.

A digital filter with the uniform window is considered as
another example. Its transfer function and kernel are:

Fωf
(t) =

T

M

M−1∑

m=0

δ
(
t− mT

M

)
exp

(
2πik

m

M

)
(15)

K(ωf , p) � T sin2
(
hω(p)− ωfk

)
T
2

M2 sin2
(
hω(p)− ωfk

)
T

2M

(16)

where M is the number of points measured, and ωfk =
2πk/T . At T → ∞, this expression also tends to δ-
function like (14). The spectrum distortion with M =
1024 and the finite T is shown in Fig.2, where the same
notations as in Fig.1 are used.
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Figure 2: The Schottky spectrum with a digital filter vs
pf/σp for various ∆x = 2/h|ω ′p|Tσp.

So, as one could expect, this regime of measurements al-
lows to recreate the momentum spectrum with the accuracy
being higher for a lower filter bandwidth (longer time of
measurement). However, a very small bandwidth leads to a
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violation of the condition ΩT � 1, resulting in a compli-
cated split of the spectrum in harmonics of the synchrotron
frequency. Formula (8) is inapplicable in such a case; nev-
ertheless an exact recreation of the momentum spread is
possible still. To prove it, it is better to rewrite Eq. (6) in a
form:

P (S)
ωf

= R (ef0)2
∑

h

∫
N ′(A) dA

∞∑

m=−∞
|Imh(A)|2

×
∞∫

0

Gωf
(t) exp

(
i t (hω0 + mΩ)

)
dt, (17)

where

Imh(A) =
1
2π

π∫

−π

exp
(
ihθ(A, φ)− imφ

)
dφ. (18)

We will use the transfer function (11-12) at ∆ωf = 0 cor-
responding to an ideal narrow-band filter. Then Eq. (17)
gives:

P (S)
ωf

=
πR

4
(ef0)2

∑

h

∞∫

0

N ′(A) dA

∞∑

m=−∞
|Imh(A)|2

× δ
(
ωf − hω0 −mΩ(A)

)
(19)

At any h the spectrum contains a lot of lines for different
m. The availability of the δ-function allows to integrate
over A; however it is necessary to take into account a pos-
sible non-monotonic dependence of Ω(A). Such a situation
is peculiar to the Recycler, where the accelerating voltage is
a succession of rectangular pulses (’barriers’) of alternating
polarity. The synchrotron frequency, Ω, is a growing func-
tion at small A, however for some A it decreases because
of deep ingress of particles into the barriers. Therefore, two
values of A1,2 may correspond to a given Ω, and Eq. (19)
gives:

P (S)
ωf

=
πR

4
(ef0)2

∑

h

∞∑

m=−∞

2∑

i=1

(20)

|Imh

(
Ai(Ωm)

)|2N ′(Ai(Ωm)
)
A′

i(Ωm),

where Ωm = (ωf − hω0)/m. Further calculation is rather
cumbersome, using specific parameters of the accelerator,
etc. However, it is possible to get a very simple general
expression for the measured dispersion of the momentum
distribution, obtained at each h. Preliminary note that

∞∑

m=−∞
|Imh(A)|2 = 1 (21)

and
∞∑

m=−∞
|mImh(A)|2 =

h2

2π

π∫

−π

[
∂θ

∂φ
(A, φ)

]2

dφ (22)

Using this, one can show that at some h, the function (19)
describes a distribution with the central frequency hω0 and

the dispersion:

σ2
ω =

h2

2πN

π∫

−π

∞∫

0

[
∂θ

∂φ
(A, φ)Ω(A)

]2

N ′(A) dAdφ (23)

Taking into account that

Ω
∂θ

∂φ
=

dθ

dt
= ω(p)− ω0 = (p− p0)

dω

dp
, (24)

as well as dAdφ/2π = dθdp and definition (9), one can
rewrite this as

σ2
ω = h2

(dω

dp

)2
∞∫

−∞
W (p) (p− p0)2 dp, (25)

which just gives the exact value for the momentum disper-
sion.

CONCLUSIONS

The general formula (6) for the Schottky spectrum
of arbitrary bunched beams was provided. The most
important conclusions from it are:

1. If the Schottky noise signal is registered with a band-
pass filter wide enough to include several synchrotron
frequencies and the time of measurement is short enough
as compared to the synchrotron period, the Schottky
spectrum represents an instantaneous ”snap-shot” of the
momentum distribution in a bunched beam. Deviations of
the measured Schottky signal spectrum from an actual mo-
mentum distribution function depend on the characteristics
of the band-pass filter as demonstrated in Fig. 1 and 2.

2. If the band-pass filter becomes very narrow, Eq. (20)
gives a prescription on how to derive the Schottky power
spectrum in any given case. A possible non-monotonic
dependence of the synchrotron frequency on amplitude is
taken into account also.

3. The general expression for the rms momentum measured
by ultimately narrow-band filter was obtained and given by
Eq. (25). It is interesting and important to point out that the
r.m.s width of the Schottky spectrum in this case is always
proportional to the r.m.s momentum spread of the beam.
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