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Abstract

An extended 1D kinetic model is used to investi-
gate the effects of positrons on relativistic solitons in
electron-positron-ion plasmas. The soliton existence
domains were specified in the plane of normalized
frequency(ω)-temperature(λ) with varying relative density
of the positrons, αm. The domain becomes larger when the
parameter αm increases because of the increase of Lang-
muir frequency. The soliton form does not depend signifi-
cantly on the value of the ratio αm even in the limit of high
temperature.

INTRODUCTION

Relativistic solitons have been investigated because of its
importance for basic nonlinear science[1, 2]. Relativistic
solitons are self-trapped, finite size, electromagnetic waves
that propagate without diffraction spreading.

With peta-watt lasers currently available, e+ − e−

pair-production by laser-plasma interaction has been
suggested[3, 4]. By the quiver motions of electrons over
energy of 2mec

2 due to the intense field of the laser,
electron-positron pairs can be created[4]. A three-species
plasma can be made by this pair creation. The effects of
the created positrons on the nonlinear structures, including
relativistic solitons, is not known well at present.

Investigations of relativistic solitons in electron-
positron-ion plasmas can give us an useful insight about
the roles of positrons and ions on the relativistic solitons.
In addition, hot electrons by the intense fields of laser can
change the relativistic soliton and the cold plasma models
must be modified to model the relativistic soliton with hot
particles.

In this report, we briefly report our recent study about
physical conditions of relativistic soliton existence in
electron-positron-ion plasmas with emphasis on kinetic ef-
fects. The conditions in αm−λ plane are discussed in con-
nection with role of ions for the soliton which was briefly
noted in Ref. [1].

GOVERNING EQUATIONS OF THE
RELATIVISTIC SOLITON IN THE

ELECTRON-POSITRON-ION PLASMA

In the interaction of high power lasers and a plasma, the
transverse thermal motion of the charged particles is negli-
gible compared with the motion caused by the strong trans-

verse field of the electromagnetic wave. We can model this
with an anisotropic distribution function for the j-th species
of the charged particles[2]:

fj(Wj ,Pj) =
Nj

2mjK1(β−1
j )

δ(P⊥j) exp
[
−Wj

Tj

]
(1)

where the total energy of the particles, Wj , of the j-
th species is Wj = mjγj + qjφ(r, t). We normalize
the equations and all of the following physical quantities
by c with c = 1. γj is the relativistic factor, γj =
(1+ (pj/mj)2)1/2. The particle generalized momentum is
Pj(r, t) = pj +qjA(r, t). Here φ(r, t) and A(r, t) are the
scalar and the vector potential of the electromagnetic field.
βj = Tj/mj is the ratio of the thermal energy to the rest
energy of the j-th species particles. mj , qj , N0j ,pj , and
Tj are the mass, electric charge, unperturbed density, mo-
mentum, (constant) temperature of the j-th species. Ki(ξ)
is the modified Bessel function of the second kind of the
i-th order with argument ξ. (See Ref. [2] for details.)

The quasineutrality condition gives us the relations be-
tween particle densities in the form N0iZi = (1 −
αm)N0e, N0p = αmN0e, ZiN0i + N0p = N0e where Zie
is the ion charge, αm is the ratio of the unperturbed positron
density to the electron density, αm = N0p/N0e. The sub-
script i is for ion, p for positron, e for electron.

With the distribution function (1), we obtain the particle
density and the current density. From Maxwell equations
with the electric charge density and the current density, we
can obtain equations for the vector and scalar potentials.
They can be written in the form:

axx + ω2a = a

[
K0(γ⊥eλ

−1
e )

K1(λ−1
e )

exp
[
ϕ

λe

]

+αm

K0(γ⊥p λ
−1
p )

K1(λ−1
p )

exp
[
− ϕ

λp

]

+(1− αm)ρZ
K0(γ⊥i(ρλi)−1)
K1((ρλi)−1)

exp
[
−Zϕ
λi

]]
(2)

ϕxx =
[
γ⊥e

K1(γ⊥eλ
−1
e )

K1(λ−1
e )

exp
[
ϕ

λe

]

−αmγ⊥p

K1(γ⊥pλ
−1
p )

K1(λ−1
p )

exp
[
− ϕ

λp

]

−(1− αm)γ⊥i
K1(γ⊥i(ρλi)−1)
K1((ρλi)−1)

exp
[
−Zϕ
λi

]]
.(3)
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Here γ⊥i =
√

1 + ρ2Z2a2, γ⊥p = γ⊥e =
√

1 + a2,
and ϕ and a⊥ are new dimensionless variables defined as
ϕ = eφ/me and a⊥ = eA⊥/me. Time and space coordi-
nates t and x have been normalized by the Langmuir fre-
quency ωpe, thus ωpet→ t and ωpex→ x. βj are rewritten
as λe = Te/me = βe, λp = Tp/me, and λi = Ti/me with
a new normalization by me. ρ = me/mi = 1/1836 is
the ratio of the mass of the electron to the ion and Z is
the ion charge number. With the assumptions of circularly
polarized electromagnetic fields and nondrift localized so-
lutions, the vector potential can be written as a(x, t) as
a(x, t) = a(x)eiωt, where ω is frequency of the electro-
magnetic wave.

The solution must satisfy the boundary condition
a, ax, ϕ, ϕx → 0 as | x |→ ∞ for localized solutions.
The solution behaves as exp (−σ | x |) with large x, and σ
must be positive for a soliton solution. With small ampli-
tude equation, axx−∆ω2a(x) ≈ 0, ∆ω2 > 0 for a soliton
solution. The condition for the soliton solution is given as:

(1− αm)ρZ
K0((ρλi)−1)
K1((ρλi)−1)

+αm

K0(λ−1
p )

K1(λ−1
p )

+
K0(λ−1

e )
K1(λ−1

e )
− ω2 > 0 (4)

Solitons exist in the domain satisfying the condition in ω−
λ plane. The boundary of the domain is given from ∆ω2 =
0.

We consider isothermal plasmas, for which λe = λp =
λi = λ. In the case considered here, Z = 1 and ρ =
1/1836, which correspond to H+(proton) ion component.
The electric charge quasineutrality is assumed, which can
be expressed as ϕxx

∼= 0. As a result we obtain:

axx + ω2a =

a

[
(1− αm)ρ

K0(γ⊥i(ρλ)−1)
K1((ρλ)−1)

F (a; ρ, αm)−
1
2

+αm
K0(γ⊥pλ

−1)
K1(λ−1)

F (a; ρ, αm)−
1
2

+
K0(γ⊥eλ

−1)
K1(λ−1)

F (a; ρ, αm)
1
2

]
(5)

where a function F (a; ρ, αm) is given by:

F (a; ρ, αm) = αm+

(1− αm)
γ⊥i

γ⊥e

K1(λ)
K1((ρλ)−1)

K1(γ⊥i(ρλ)−1)
K1(γ⊥eλ−1)

(6)

The simplified equation (5) was solved to obtain the soli-
ton solutions of the vector potential a, the scalar potential
ϕ, and the longitudinal electric field E. in the next section.
We investigated in the parameter ranges of 0.03 ≤ ω ≤
1.50, 10−3 ≤ λ ≤ 103, αm = 10−5, 10−4, 10−3, 10−2,
0.1 to 0.9, 0.99, 0.999, 0.9999, 0.99999.
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Figure 1: Changes of the existence domain are shown with
ωpe. 10−2 ≤ λ ≤ 102 and 10−1 ≤ ω ≤ 2.

EFFECTS OF POSITRONS ON
RELATIVISTIC SOLITONS IN

ELECTRON-POSITRON-ION PLASMAS

The region of localized solutions from Eq. (4) is speci-
fied in Fig. 1 and the variation of the region with increasing
αm is shown in Fig. 1. The soliton exists in the region un-
der the boundary curve. ω is the frequency of incident elec-
tromagnetic wave normalized by the Langmuir frequency
ωpe = (4πN0ee

2/me)1/2.
The existence domain is divided to two regions by

λ = 1. With λ < 1, the maximum frequency be-
comes gradually saturated and converges to ω∗pe = (4(1 +
αm)πN0ee

2/me)1/2. With λ ≥ 1, the maximum fre-
quency decreases exponentially by increase of λ. As αm

increases to 1.00, the boundary of the domain shifts to
higher ω and λ. This is explained by the increase of the
Langmuir frequency because of increased proportion of
light particles in the plasma and larger mobility of positrons
compared to ions.

The left side of Fig. 2 shows changes of the soliton with
increasing αm and λ = 0.01, which represents the soli-
ton in temperatures under mec

2, and the right side with
λ = 30, which represents the soliton in high temperatures
abovemec

2. The soliton does not show any change with in-
creasing αm up to very high proportion of positrons in low
temperature as seen in the left side. Even with αm = 0.99,
where the proportion of the ions is only 1 percent of the
electrons, the soliton shows little change. Compared with
the left side, the soliton is not changed much as αm in-
creases, but with αm = 0.99, the scalar potential almost
vanishes.

A function M(ψ;λ, αm) was introduced to investigate
the dependency of the soliton form on λ and αm quantita-
tively. The function M(ψ;λ, αm) is defined as:

M(ψ;λ, αm) =
max |ψ(x;λ, αm)|
max |ψ(x;λ, 0)| (7)
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Figure 2: Comparison of soliton solutions with varying
αm = 0.1, 0.5, 0.99 in a low(left side, λ = 0.01) and a
high temperature(right side, λ = 30). The vector potential
a is drawn with solid line and the scalar potential ϕ with
dashed line. (a) αm = 0.1 (b) αm = 0.5 (c) αm = 0.99

where ψ(x;λ, αm) is each field distribution a, ϕ,E with
given λ and αm and max |ψ(x;λ, αm)| is the maximum of
absolute value of the field amplitude.

The region is divided to two regions by λ = 1. We can
see that M(ψ;λ, αm) is 1 with λ ≤ 1 in Fig. 3. The
condition M(ψ;λ, αm) ≥ 1 specifies the region of soliton
existence without influences of positrons in λ− αm plane.

This role of ions is shown explicitly in Fig. 3 extending
the discussion in Ref. [1] to the plasmas with finite temper-
atures. The ion component presence is important to sup-
port soliton structure in the plasma. The ability of ions to
support soliton becomes weaker in high temperature over
mec

2. Fig. 3 shows that the role of the ions as a sup-
port of soliton is affected by increase of particles’ thermal
energies. The changes of M(ϕ;λ, αm) and M(E;λ, αm)
are explained by the increase of ion’s mobility with tem-
perature increase. Relativistic nonlinear effects also help
reducing differences among ion’s mobility, electron’s and
positron’s mobilities.
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Figure 3: Figure 4. Plot of M(ψ;λ, αm) with ψ = a, ϕ,
and E with respect to αm. The direction of λ axis is in-
verted to show the changes explicitly in (b) and (c). (a)
M(a;λ, αm) (b) M(ϕ;λ, αm) (c) M(E;λ, αm)
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