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Abstract 
  The development of modern accelerator control 

systems has taken advantage of the possibility to use 
standard architecture designs based on the experience 
gained in industrial applications. Communication buses, 
board formats, operating systems, network protocols and 
operator interface software are the main elements of this 
new approach. In this paper we will discuss the way to 
apply this method also to the design of electronic boards 
which call for custom design of particular circuits and 
capabilities. The use of FPGA based standard modules 
along with the possibility to customize them using a 
standard LabVIEW environment to obtain reconfigurable 
hardware resources will be presented. 

INTRODUCTION 

 
In the last years algorithm reconfigurable devices such 

as field programmable gate arrays (FPGA) and digital 
signal processors (DSP) have been widely used in the 
industrial world as system-on-chip (SoC) applications. 
Those devices make it possible to develop a high 
performance system in a short period of time, and 
moreover it is possible to have a small quantity of devices 
at reasonable costs. The structure of SoC devices with 
FPGA is fully flexible and can respond to change of the 
logic of a control system easily. The capability of 
modifying the logic enables us to easily implement future 
additions to the system. These features, along with 
increased performance demands, have fuelled the push of 
digital technology deeper into the controlled devices. The 
justifications often quoted for this push to digital include 
reproducibility, increased stability, increased resolution, 
and decreased infrastructure costs (networks replace 
control wiring). 

The actual trend in the design of accelerator control 
systems is to use as much as possible commercial off-the-
shelf (COTS) products.  The use of COTS products as 
elements of larger systems is becoming increasingly 
commonplace.  Shrinking budgets, accelerating rates of 
COTS enhancement, and expanding system requirements 
are all driving this process.   The shift from custom 
development to COTS-based systems is occurring in both 
new development and maintenance activities. 

  Nevertheless the need to integrate different 
subsystems coming both from the industrial market and 
from international research collaborations, and the special 
requirements arising from the operation of particular 
piece of equipments calls for the development of custom 
boards along with the related firmware/software. 

These developments may require an effort which is not 
allowed by the skill and the man power available in the 
control teams and/or a cost which is in excess with 
respect to the equipment to be controlled. 

The possibility to apply FPGA based design to address 
these demands has been a successful option in a lot of 
different situations.  

In this paper we will present and discuss a further 
evolution of this concept due to the last year 
announcements by National Instruments of a new 
software platform along with the first related devices.  

Since 1992 the development environment named 
LabVIEW has been the most impressive evolution in the 
world of data acquisition and analysis programming. The 
capabilities offered by this language have found a 
widespread use in the industrial and research world 
making it a de-facto standard. In the last years more 
efforts have been devoted to address specific needs which 
required a less general approach (vision, real time, 
SCADA, etc.) In 2003 National Instruments (NI) 
extended the LabVIEW graphical development 
environment to FPGAs. By configuring the FPGAs on 
special designed NI RIO hardware, one can offload tasks 
from Windows based or Real-Time host machine and 
achieve a level of determinism only possible on a 
hardware platform.  

The possibility to use the same environment and the 
same techniques to write code for general purpose control 
applications and for device programming has been a real 
revolution in the world of modern programming. The 
need to have engineers skilled in VHDL language and to 
develop special interfaces between FPGA designs and 
control computers is now no more true.  

 
 

 
 

Fig. 1 Block Diagram of the NI-7831 board   
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RECONFIGURABLE I/O DEVICES 
 
The block diagram of the first board (named NI-7831R) 

developed by NI to support the new architecture is shown 
in fig. 1 

The NI 7831R is based on a reconfigurable FPGA core 
surrounded by fixed I/O resources for analog and digital 
input and output (8 ADC channels, 8 DAC channels, 96 
DIO channels). It is possible to configure the behavior of 
the core to match the requirements of the measurement 
and control system.  LabVIEW logic and processing may 
be implemented in the FPGA of the R Series device. 
Typical logic functions include Boolean operations, 
comparisons, and basic mathematical operations.  

Multiple functions may be available efficiently in the 
same design, operating sequentially or in parallel.  
Software accesses the R Series device through the host 
computer bus interface, and the FPGA connects the bus 
interface and the fixed I/O to make possible timing, 
triggering, processing, and custom I/O functions using the 
LabVIEW FPGA Module. Each fixed I/O resource used 
by the application uses a small portion of the FPGA logic. 
The bus interface also uses a small portion of the FPGA 
logic to provide software access to the device. The 
remaining FPGA logic is available for higher level 
functions.  

The NI 7831 R uses a XILINX Virtex II FPGA with 
5120 logic slices (equivalent to 11520 logic cells), 80 
Kbytes of internal memory and a timebase clock of 40 
MHz. 

The architecture of the NI 7831 R allows to address 
issues related to the possibility to develop a 
multiprocessors architecture in PCI and cPCI systems. 
Asymmetrical multiprocessing ties together different 
FPGA boards. Each board is "intelligent" in that it has its 
own processor and copy of the operating system. Fig. 3 
shows this basic configuration, with the user interface and 
the network part of the system implemented on the host 
CPU, and additional real-time processing power provided 
by I/O modules based on FPGAs.  
 

 
 

Fig.2  Multiple FPGA boards working in a parallel 
fashion  

 

LABVIEW FPGA MODULE 
 

The LabVIEW FPGA Module provides the same 
graphical programming environment for the creation of 
code (FPGA VIs) as LabVIEW does for standard VIs. 
The LabVIEW graphical programming environment 
includes front panels and block diagrams, powerful 
editing tools, and a wide range of included functions. 

It is possible to design FPGA code that allows the 
FPGA device to operate independently of the rest of the 
system. This results in the fact that a robust FPGA code 
that use the ability to operate independently and continue 
to run even if the host computer—the computer that 
controls and monitors the FPGA device—crashes. 
Furthermore, it is possible to design the FPGA code to 
store data on the FPGA until the host computer can 
retrieve the data. Another advantage of the FPGA Module 
is parallel execution of block diagram operations in an 
FPGA code. Portions of the block diagram that do not 
depend on other portions execute in parallel on the FPGA 
device. For example, multiple independent While Loops 
on a block diagram each have independent portions of 
hardware. Therefore, the multiple independent While 
Loops run simultaneously on the FPGA device.  
 

 
 

Fig.3  Communication architecture between host and 
FPGA devices  

FPGA AND HOST COMPUTER 
COMMUNICATIONS 

 
After a FPGA VI has been loaded on the FPGA device, 

we have to study carefully the way to communicate with 
it. Depending on the application requirements, there are 
two possible architectures to communicate with the FPGA 
VI: interactively or programmatically. Use Interactive 
Front Panel Communication to communicate with the 
FPGA VI directly from the front panel of the FPGA VI. 
Use Programmatic FPGA Interface Communication to 
communicate with the FPGA VI from a VI running on the 
host computer. The VI running on the host computer is 
called the host VI. 
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Systems that require to create a multi tiered application 
with the FPGA device as a component of a larger system 
or that need to perform operations not available on the 
FPGA device, such as floating-point arithmetic, have to 
follow the programmatic communication model.  

To investigate the performances that can be obtained in 
such a model we have developed a driver between a CPU 
board and an FPGA board. The driver has been designed 
so that the FPGA board set an interrupt to the CPU and 
then it measures the time elapsed before getting back an 
ACK signal (in order to measure the latency to the 
interrupt and the start time of the interrupt service routine) 
and the time to get 40 byte of data. The CPU runs 
standard Windows 2000 operating system and it is based 
on Pentium III 1 GHz component. The elapsed time has 
been measured using internal counters on the FPGA and 
the tick resolution is of the order of 25 ns. Figure 4 shows 
the basic code in the FPGA 

The results obtained may be considered promising 
since the cycle involving only the ACK signal requires 31 
microsec. and the further reading of 40 bytes adds 34 
microsec. The jitter in the measurements is very low (of 
the order of 3%)  

 

 
Fig.4 FPGA LabVIEW code to measure 
communication performances 

APPLICATIONS 
 
We have developed a few applications based on the 

items so far discussed. The design of each one of these 
applications allows an easy integration within already 
existing systems. 

 

Programmable Waveform Generator 

The first application has been an instrument able to 
generate a set of correlated waveforms each one with 
different frequency and duration.  The typical time base of 
the device is of the order of 25 ns. in order to generate 
square waves up to 10 MHz and with the capability to 
modify the frequency of up to 6 orders of magnitudes 
without any discontinuity in the output. The application of 
this board is typically as a time generator for fast data 

acquisition sampling or as a complex trigger in sequence 
based devices. A single board solution has been designed 
and the whole application requires nearly 30% of the 
available resources. 

 

Serial Bus Simulator 

The second application has been devoted to build a 
simulator  of complex protocols based on serial 
communications with speeds up to 1 Mbit/s. Usually these 
protocols refers to components coming from defence 
applications and that are no more available due to 
obsolescence reasons. We have implemented and tested a 
single board solution able to drive up to 4 of these links. 

 

Timing Generation and Distribution 

The third application refers to the possibility to design a 
master timing generator and the related peripheral 
receiving modules, to be used as the basic building block 
for a digital distributed timing system with a resolution of 
the order of 1 microsec. 

The master timing generator has been designed using 2 
FPGA boards inserted in a cPCI chassis with a general 
purpose Pentium IV based CPU. The first FPGA board 
handles the schedule of the events as it gets from the CPU 
every 500 msec. The second encode the timing events 
(max 16 bytes long) emulating a Manchester biphase 
serial encoder (in order to have a 1 Mbit/s channel with 
synchronization embedded) and waits for single digital 
events. The serial bus may be converted in optical to 
reduce the possibility to suffer noise from the 
environment. The optical signal may be distributed using 
passive optical splitters.  

The peripheral modules are based on a single board 
design and they integrate both the equivalent Manchester 
biphase serial decoder and a local intelligence to handle 
the timing words and generate digital events as single 
triggers, waveforms, state transitions. The peripheral 
module may communicate with a host CPU to share these 
events on a cPCI bus (taking as a reference the 
performance above discussed) or to get more 
complementary information received from high level 
interfaces (Ethernet). 

CONCLUSIONS 
We have developed a few applications with single 

FPGA boards and others are in progress. The technology 
and the tools available by National Instruments seem very 
interesting to be used in accelerator control system 
applications. 
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