
RECONFIGURABLE HARDWARE RESOURCES IN ACCELERATOR
CONTROL SYSTEMS

Dario Giove, Carlo De Martinis , Marco Mauri

 INFN-Milan and University of Milan

Abstract
 The development of modern accelerator control

systems has taken advantage of the possibility to use
standard architecture designs based on the experience
gained in industrial applications. Communication buses,
board formats, operating systems, network protocols and
operator interface software are the main elements of this
new approach. In this paper we will discuss the way to
apply this method also to the design of electronic boards
which call for custom design of particular circuits and
capabilities. The use of FPGA based standard modules
along with the possibility to customize them using a
standard LabVIEW environment to obtain reconfigurable
hardware resources will be presented.

INTRODUCTION

In the last years algorithm reconfigurable devices such

as field programmable gate arrays (FPGA) and digital
signal processors (DSP) have been widely used in the
industrial world as system-on-chip (SoC) applications.
Those devices make it possible to develop a high
performance system in a short period of time, and
moreover it is possible to have a small quantity of devices
at reasonable costs. The structure of SoC devices with
FPGA is fully flexible and can respond to change of the
logic of a control system easily. The capability of
modifying the logic enables us to easily implement future
additions to the system. These features, along with
increased performance demands, have fuelled the push of
digital technology deeper into the controlled devices. The
justifications often quoted for this push to digital include
reproducibility, increased stability, increased resolution,
and decreased infrastructure costs (networks replace
control wiring).

The actual trend in the design of accelerator control
systems is to use as much as possible commercial off-the-
shelf (COTS) products. The use of COTS products as
elements of larger systems is becoming increasingly
commonplace. Shrinking budgets, accelerating rates of
COTS enhancement, and expanding system requirements
are all driving this process. The shift from custom
development to COTS-based systems is occurring in both
new development and maintenance activities.

 Nevertheless the need to integrate different
subsystems coming both from the industrial market and
from international research collaborations, and the special
requirements arising from the operation of particular
piece of equipments calls for the development of custom
boards along with the related firmware/software.

These developments may require an effort which is not
allowed by the skill and the man power available in the
control teams and/or a cost which is in excess with
respect to the equipment to be controlled.

The possibility to apply FPGA based design to address
these demands has been a successful option in a lot of
different situations.

In this paper we will present and discuss a further
evolution of this concept due to the last year
announcements by National Instruments of a new
software platform along with the first related devices.

Since 1992 the development environment named
LabVIEW has been the most impressive evolution in the
world of data acquisition and analysis programming. The
capabilities offered by this language have found a
widespread use in the industrial and research world
making it a de-facto standard. In the last years more
efforts have been devoted to address specific needs which
required a less general approach (vision, real time,
SCADA, etc.) In 2003 National Instruments (NI)
extended the LabVIEW graphical development
environment to FPGAs. By configuring the FPGAs on
special designed NI RIO hardware, one can offload tasks
from Windows based or Real-Time host machine and
achieve a level of determinism only possible on a
hardware platform.

The possibility to use the same environment and the
same techniques to write code for general purpose control
applications and for device programming has been a real
revolution in the world of modern programming. The
need to have engineers skilled in VHDL language and to
develop special interfaces between FPGA designs and
control computers is now no more true.

Fig. 1 Block Diagram of the NI-7831 board

Proceedings of EPAC 2004, Lucerne, Switzerland

701

RECONFIGURABLE I/O DEVICES

The block diagram of the first board (named NI-7831R)

developed by NI to support the new architecture is shown
in fig. 1

The NI 7831R is based on a reconfigurable FPGA core
surrounded by fixed I/O resources for analog and digital
input and output (8 ADC channels, 8 DAC channels, 96
DIO channels). It is possible to configure the behavior of
the core to match the requirements of the measurement
and control system. LabVIEW logic and processing may
be implemented in the FPGA of the R Series device.
Typical logic functions include Boolean operations,
comparisons, and basic mathematical operations.

Multiple functions may be available efficiently in the
same design, operating sequentially or in parallel.
Software accesses the R Series device through the host
computer bus interface, and the FPGA connects the bus
interface and the fixed I/O to make possible timing,
triggering, processing, and custom I/O functions using the
LabVIEW FPGA Module. Each fixed I/O resource used
by the application uses a small portion of the FPGA logic.
The bus interface also uses a small portion of the FPGA
logic to provide software access to the device. The
remaining FPGA logic is available for higher level
functions.

The NI 7831 R uses a XILINX Virtex II FPGA with
5120 logic slices (equivalent to 11520 logic cells), 80
Kbytes of internal memory and a timebase clock of 40
MHz.

The architecture of the NI 7831 R allows to address
issues related to the possibility to develop a
multiprocessors architecture in PCI and cPCI systems.
Asymmetrical multiprocessing ties together different
FPGA boards. Each board is "intelligent" in that it has its
own processor and copy of the operating system. Fig. 3
shows this basic configuration, with the user interface and
the network part of the system implemented on the host
CPU, and additional real-time processing power provided
by I/O modules based on FPGAs.

Fig.2 Multiple FPGA boards working in a parallel
fashion

LABVIEW FPGA MODULE

The LabVIEW FPGA Module provides the same
graphical programming environment for the creation of
code (FPGA VIs) as LabVIEW does for standard VIs.
The LabVIEW graphical programming environment
includes front panels and block diagrams, powerful
editing tools, and a wide range of included functions.

It is possible to design FPGA code that allows the
FPGA device to operate independently of the rest of the
system. This results in the fact that a robust FPGA code
that use the ability to operate independently and continue
to run even if the host computer—the computer that
controls and monitors the FPGA device—crashes.
Furthermore, it is possible to design the FPGA code to
store data on the FPGA until the host computer can
retrieve the data. Another advantage of the FPGA Module
is parallel execution of block diagram operations in an
FPGA code. Portions of the block diagram that do not
depend on other portions execute in parallel on the FPGA
device. For example, multiple independent While Loops
on a block diagram each have independent portions of
hardware. Therefore, the multiple independent While
Loops run simultaneously on the FPGA device.

Fig.3 Communication architecture between host and
FPGA devices

FPGA AND HOST COMPUTER
COMMUNICATIONS

After a FPGA VI has been loaded on the FPGA device,

we have to study carefully the way to communicate with
it. Depending on the application requirements, there are
two possible architectures to communicate with the FPGA
VI: interactively or programmatically. Use Interactive
Front Panel Communication to communicate with the
FPGA VI directly from the front panel of the FPGA VI.
Use Programmatic FPGA Interface Communication to
communicate with the FPGA VI from a VI running on the
host computer. The VI running on the host computer is
called the host VI.

Proceedings of EPAC 2004, Lucerne, Switzerland

702

Systems that require to create a multi tiered application
with the FPGA device as a component of a larger system
or that need to perform operations not available on the
FPGA device, such as floating-point arithmetic, have to
follow the programmatic communication model.

To investigate the performances that can be obtained in
such a model we have developed a driver between a CPU
board and an FPGA board. The driver has been designed
so that the FPGA board set an interrupt to the CPU and
then it measures the time elapsed before getting back an
ACK signal (in order to measure the latency to the
interrupt and the start time of the interrupt service routine)
and the time to get 40 byte of data. The CPU runs
standard Windows 2000 operating system and it is based
on Pentium III 1 GHz component. The elapsed time has
been measured using internal counters on the FPGA and
the tick resolution is of the order of 25 ns. Figure 4 shows
the basic code in the FPGA

The results obtained may be considered promising
since the cycle involving only the ACK signal requires 31
microsec. and the further reading of 40 bytes adds 34
microsec. The jitter in the measurements is very low (of
the order of 3%)

Fig.4 FPGA LabVIEW code to measure
communication performances

APPLICATIONS

We have developed a few applications based on the

items so far discussed. The design of each one of these
applications allows an easy integration within already
existing systems.

Programmable Waveform Generator

The first application has been an instrument able to
generate a set of correlated waveforms each one with
different frequency and duration. The typical time base of
the device is of the order of 25 ns. in order to generate
square waves up to 10 MHz and with the capability to
modify the frequency of up to 6 orders of magnitudes
without any discontinuity in the output. The application of
this board is typically as a time generator for fast data

acquisition sampling or as a complex trigger in sequence
based devices. A single board solution has been designed
and the whole application requires nearly 30% of the
available resources.

Serial Bus Simulator

The second application has been devoted to build a
simulator of complex protocols based on serial
communications with speeds up to 1 Mbit/s. Usually these
protocols refers to components coming from defence
applications and that are no more available due to
obsolescence reasons. We have implemented and tested a
single board solution able to drive up to 4 of these links.

Timing Generation and Distribution

The third application refers to the possibility to design a
master timing generator and the related peripheral
receiving modules, to be used as the basic building block
for a digital distributed timing system with a resolution of
the order of 1 microsec.

The master timing generator has been designed using 2
FPGA boards inserted in a cPCI chassis with a general
purpose Pentium IV based CPU. The first FPGA board
handles the schedule of the events as it gets from the CPU
every 500 msec. The second encode the timing events
(max 16 bytes long) emulating a Manchester biphase
serial encoder (in order to have a 1 Mbit/s channel with
synchronization embedded) and waits for single digital
events. The serial bus may be converted in optical to
reduce the possibility to suffer noise from the
environment. The optical signal may be distributed using
passive optical splitters.

The peripheral modules are based on a single board
design and they integrate both the equivalent Manchester
biphase serial decoder and a local intelligence to handle
the timing words and generate digital events as single
triggers, waveforms, state transitions. The peripheral
module may communicate with a host CPU to share these
events on a cPCI bus (taking as a reference the
performance above discussed) or to get more
complementary information received from high level
interfaces (Ethernet).

CONCLUSIONS
We have developed a few applications with single

FPGA boards and others are in progress. The technology
and the tools available by National Instruments seem very
interesting to be used in accelerator control system
applications.

ACKNOWLEDGEMENTS

We would like to acknowledge very helpful discussions

and the valuable support received by ing. Paolo Ghidetti
(SIDeA SpA – Milan).

Proceedings of EPAC 2004, Lucerne, Switzerland

703

