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Abstract 
The High Energy Storage Ring (HESR) of the future GSI 
FAIR project is an antiproton storage ring in the energy 
range from 5.1445.0 ÷ GeV. It has to provide small 
momentum spread down to 10-5 and intensities up to 
5*1011.In this paper a lattice with flexible momentum 
compaction is presented  able to fulfil these requirements 
and leading to ~ 500 m total  circumference. Impedance 
limits for the cooled HESR  beam  have to be determined. 

INTRODUCTION 
To meet to all requirements of HESR project [1] the 
lattice has to provide special features:  

- small momentum spread 54 1010 −− ÷   
- flexible adjustment of  momentum compaction 

factor in region 2.00 −÷≈α  
- wide energy range 5.1445.0 ÷ GeV 
- dispersion free straight sections  
- sufficiently large dynamic aperture after 

sextupole correction 
- corrected chromaticity by arc’s sextupoles 
- minimum influence of non-linear tune shift in 

target point 
The most critical point to reach is low momentum spread.  
The only solution is a negative momentum compaction 

factor 0/1 2 <= tγα  with imaginary transition energy tγ , 

since higher slip factor, 22 /1/1 γγη −= t , provides 

higher Keil-Schnell threshold 
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quadrupole and =p vm γ0  is the momentum of the 

particle. When the curvature is modulated with some 

frequency S  as RBeiS /1~)(/1 +ττρ  and )(τρ=R  the 

common solution of (1) is:  
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In a lattice with super periodicity close to the eigen 
frequency xx SS νν ,<<−  the dispersion is determined by 

the second term of (2) and the momentum compaction 
factor is:  
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The idea how to get the negative momentum 
compaction factor was qualitatively shown in reference 
[2] first. Later many authors tried to realize this idea in 
different lattices, and most successful solution has been 
reached in [3] by correlated curvature and gradient 
modulations. Later this lattice was taken as reference in 
projects like the TRIUMF Kaon Factory, SSC LEB, 
CERN Neutrino Factory and the main ring of the  JPARC 
facility presently under construction [4]. 

ARCS  
 In order to minimize the preparation procedure for each 
experiment the HESR lattice has to have decoupled 
functions responsible for global parameters of the 
machine like transition energy, zero chromaticity, 
dispersion suppressing and local parameters like beam 
luminosity on target, optimum parameters for cooling, 
injection system etc. The lattice consists of two arcs and 
two straight sections for target and cooling facilities with 
circumference approx. 500 m. The arcs play the most 
important role for global parameters. We considered two 
types of lattice, both with a racetrack shape. In the first 
option the arc has a four-fold symmetry with four super 
periods. In the second option the arc has a six-fold 
symmetry with six super periods. The phase advance per 
arc is chosen 3.0 and 5.0 in first and second options 
correspondingly. To suppress the dispersion function in 
the straight sections the arc has to be a second order 
achromat: the phase advance is integer and the 
chromaticity is corrected to zero in the arc. Each super 
period consists of three FODO cells with 4 super 
conducting bending magnets (Bmax=3.5T) and super 
conducting quadrupoles (G<75T/m) (see fig.1).  
To reach the required momentum compaction factor we 
make a correlated modulation of the gradients in the 
quadrupoles and orbit curvature [3]. The MCF is 
determined by the nS-th harmonic nearest to eigen 
frequency xν : 
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 Figure 1: Half super period of an arc 

 
where ng  and nr  are amplitudes of Fourier harmonics. In 

this lattice the gradient and the curvature modulation 
amplifies each by other, if they have opposite signs. 
Optimised ratio between ng  and nr  is determined, when 

next inequalities reach maximum: 
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Thus, we have separated internal arc functions: 
- MCF is controlled by central focusing 

quadrupole QF2, 
- horizontal tune is controlled by focusing 

quadrupole QF1,  
- vertical tune is controlled by defocusing 

quadrupoles QD1 or/and QD2. 

Since derivatives 
1QD

y

G∂
∂ν

and 
2´QD

y

G∂
∂ν

have 

approximately equal values, we use one family of 
defocusing quadrupoles only. Of course modulating of 
gradient functions causes changes of TWISS parameters. 
Figure 2 shows the dependence of TWISS parameters on 
the momentum compaction factor.  
Two families of sextupoles are used for the chromaticity 
correction: two focusing and defocusing ones (see figure 
1). If the super period number S  is even and the arc tunes 

yx,ν  are odd then the phase advance between similar 

sextupoles of thi −  and th
S

i −





 +

2
 super periods equals 

22

νν =⋅ S

S
. This means that we have an exact condition 

for compensating each sextuplet’s non-linear action by 
another one. Besides, we have a convenient place in the 
super period for chromaticity correcting. 

 
Figure 2: TWISS parameters vs momentum compaction 

factor 
 

sextupoles: the central drift space, where the dispersion 
function has a maximum value (figure 3). For higher 
efficiency the sextupoles are desirable to be placed as 
near to quadrupoles as possible in order to have weaker 
gradient. 
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Figure 3: β - functions and dispersion in one arc 

To correct the dipole, quadrupole, sextupole and octupole 
components of transverse motion, the multi-pole 
correctors are placed near maximum beta-function (see 
figures 1 and 3). For diagnostics the beam position 

monitors are installed in each 00 5040 ÷  phase advance in 
both transverse planes with maximum field approx. 0.1 T 
and effective length 0.2 m. BPMs are placed near each 
quadrupole and provide maximum residual orbit 
distortion approx. 5 mm.  

STRAIGHT SECTIONS  
   The HESR has two straight sections for cooling and 
target facilities. Both straight sections are based on split 
triplet optics, when the central quadrupole is divided on 
two even parts with long drift space between them. The 
main requirement to the optics of the cooling section is 
the adjustable yx ,β -functions in the range 100-250 m in 

the solenoid installed for electron cooling. Figure 4 shows 
TWISS parameters of the cooling straight section.  
The main function of the target straight section is to 
provide the required size of beam on the target. The yx ,β -

function has to be adjusted in the region 0.5-1.5m (see 
figure 5). On both straight sections the extreme three 
quadrupoles serve as tuning corrector in transverse 
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planes. In order to get small β -function on target we 

must blow it up somewhere, which causes essential 
contribution to the total chromaticity. 
 

 
Figure 4: The cooling straight section 

 
For instance in case of yx ,β =1.5m the target chromaticity 

induces up 20% and 40% of the total horizontal and 
vertical chromaticity respectively. In order to focus the 
beam to yx ,β =1.0 m these values are increasing to 30%, 

50% or even to 50% and 70% for yx ,β =0.5. 

 
Figure 5: The target straight section 

 
In this respect we consider two options: sextupoles 
correcting the arc’s chromaticity only utilizing the arc as a 
pure second order achromat, or sextupoles correcting the 
chromaticity of the whole machine operating the arc as 
pseudo second order achromat.  
We analysed the dynamic aperture in the whole range of 
momentum spread. Due to a suitable sextupole correction 
scheme and appropriate choice of the tune working point 

the dynamic aperture for 3105/ −⋅±=∆ pp change its 

range in horizontal plane 450350 ÷≈xDA mm mrad and 

in vertical plane 200100 ÷≈yDA  mm mrad.  

 

LATTICE ADJUSTING TO DIFFERENT 
MODES OF HESR  

   The beam is injected in the HESR with =Wδ 1 MeV 
(rms) independent from the injection energy. In order to 
satisfy to Keil-Schnell criteria for up to N=5*1011 
particles in bunch and injection energy Winj >6 GeV  the 

momentum compaction factor has to be adjusted from 
zero to -0.03. This is easy provided by gradient 
modulation (see figure 2).  
The HESR is supposed to work in two modes: the high-

luminosity mode with 1232 sec10*2 −−= cmL  and 

momentum spread ( ) 410~/ −ppδ , and the high-

resolution mode with momentum spread ( ) 510~/ −ppδ  

and luminosity of 1231 sec10 −−cm . In both modes two 
bunches are formed after injection in two separatrixes 
with a total number of particles between 5*1011 and 
5*1010 correspondingly. In the high luminosity mode, 

when 4102/ −⋅≥ppδ  the lattice with 0≈α  satisfies to 

Keil-Schnell criteria in whole energy range. To have 

stability at ( ) 410/ −≈ppδ  the momentum compaction 

factor has to be changed from zero to –0.03. Although we 
should mention that in the region from 0.45 GeV to 0.9 
GeV the Keil-Schnell criteria is not fulfilled due space 
charge impedance, which is even  increased during 
transverse beam cooling.  
Figure 6 shows similar estimation for the high-resolution 
mode. For almost all range of energy the lattice with 

012.0−≈α  satisfies the Keil-Schnell criteria for a beam 

with ( ) 5105/ −⋅=ppδ , and for ( ) 5102/ −⋅=ppδ . In the 

region 5.1410 ÷  GeV we have to adjust 12.0−≈α . 
 

 

Figure 6: ZKS and ZBBI (broad band impedance) for high-
resolution mode 
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