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Abstract 
Performance limitations of the HERA Electron Ring due 
to synchro-betatron resonances are analysed and 
successful cures have been developed and implemented 
which enable high luminosity operation at the desired 
working point for high electron spin polarization.  

INTRODUCTION 
After the HERA luminosity upgrade [2], the HERA [1] 
Electron Ring suffered from synchro-betatron resonances 
(SBR: Qx+m·Qs=q, m = 2, 3, q integer). This was mainly 
because of a lower synchrotron tune of Qs=0.051 due to 
stronger transverse focusing in the arcs (from 60° per 
FODO cell to 72°) and a shift in the damping distribution 
in favour of transverse damping which increases the 
longitudinal emittance. At the preferred working point for 
high luminosity and for high electron spin polarization 
[3], (Qx=0.13, Qy=0.21), between the 2nd and the 3rd 
SBR satellite of the horizontal integer resonance 
operation proved to be very difficult.  SBR [4] are driven 
by chromaticity, by dispersion in the RF cavities, in 
sextupoles, or at the interaction point (IP), by collisions 
under a crossing angle, or by any other effects where 
transverse forces depend on longitudinal position or 
momentum deviation.  In HERA, with a dispersion-free 
IP and head-on collisions, the main concern is 
chromaticity and dispersion in the sextupoles and RF 
cavities.  
 
Near a SBR, the amplitude of transverse betatron 
oscillations will be strongly increased due to coupling 
with the longitudinal oscillations. The beam may then be 
lost at the transverse aperture limitation even before the 
motion becomes unstable. The driving terms for SBRs 
can be calculated using the formalism for resonances in 
the transverse plane following the procedure by Ripken et 
al [5]. In this formalism the transverse coordinates are 
measured with respect to the dispersion orbit. The motion 
is then expressed in terms of longitudinal and transverse 
oscillation modes. These are only weakly coupled so that 
perturbation theory can be applied. The coupling terms in 
the Hamiltonian which drive the SBRs Qx+2Qs+q=0 and 
2Qx+Qs+q=0 are 
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Here x, p are the transverse and ε, σ are the longitudinal 
phase space variables. The independent variable is the 
path length s along the design orbit. D is the dispersion 
function, the m are the sextupole strengths, the U are the 
cavity voltages, h is the harmonic number, E0 is the 
reference energy, L is the accelerator circumference and 
φ0 is the synchronous phase. Primes denote derivatives 
with respect to s. There are three contributions, 
representing chromatics, dispersion in sextupole magnets 
and dispersion in RF cavities. In evaluating driving terms, 
one assumes solutions for the uncoupled linear motion in 
terms of amplitude and phase β(s) and ψ(s), 

))(cos()(2 zzzz ssJz ϕψβ +⋅=  for both longitudinal 
and transverse motion. The longitudinal β-function βs is 
nearly constant around the ring and is in good 
approximation
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compaction factor. The Hamiltonian described in 
reference [5] is expanded up to third order in the 
coordinates. The vertical phase space coordinates, which 
are less important, are not considered. Expansion to 
higher order terms is not expected to produce important 
contributions. The fourth order SBR resonance 
Qx+3Qs=0, however, which may be produced by 
interference between the driving terms for the resonances 
Qx+2Qs=0 and 2Qx+Qs=n, turns out to be non-negligible. 
To evaluate the driving terms of the SBRs, the standard 
procedures as described for example in reference [6] can 
be used whereby the vertical phase space variables are 
replaced by the longitudinal ones. In the case that the 
tunes are close to a resonance, the motion is dominated by 
a single harmonic of the non-linear potential (called 
driving term), for which the equations of motion can be 
solved and the stability limits of the motion can be 
evaluated. The driving term is an integral of field 
coefficients and optical functions around the accelerator. 
For the term 1/2W·D�·σ2·x for example, the corresponding 
driving terms for the resonance Qx+2Qs=q reads 
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The driving term determines the width of a resonance. 
This is defined as the distance of the tune from resonance 
for which particles with a given amplitudes become 
unstable. We calculate the width for nσ=10 times the 
natural beam size. For the resonance Qx+n·Qs+q ≈ 0, we 
have  
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εx<< εs are the unperturbed horizontal and longitudinal 
equilibrium emittances, nσ = amplitude /rms-beam size. 

RESONANCE ANALYSIS  
The resonance strengths are analysed for several HERA-e 
beam optics. The optics used before the HERA luminosity 
upgrade (HELUMV6), has a betatron phase advance of 
60° per FODO cell and has six sextupole families for 
chromaticity correction. The low emittance optics used 
after the luminosity upgrade (HELUM72GJ) has 72° per 
FODO cell. An RF frequency shift of 300Hz is applied. 
Only two sextupole families are used for chromaticity 
compensation. An improved version (HELUM72SM) still 
has only two sextupole families but has intrinsic 
cancellation of the non-linear chromaticity of the two 
colliding beam interaction regions (IR) due to appropriate 
choice of betatron phase advance. The relevant beam 
parameters are listed in Table 1. The results are listed in 
tables 2, 3 and in figure 1. The tables give values for 
driving terms and resonance widths. The linear resonance 
Qx+Qs, driven by dispersion in the RF cavities is quite 
small. The strength of the resonance Qx+2Qs is dominated 
by the term 1/2·D´·ε2·p. There is, however, no evidence for a 
significant disadvantage of the 72°optics which would 
explain the difficulties with the resonance Qx+2Qs=q near 
the desired working point which were experienced in 
operations and confirmed by tracking calculations [7]. 
However SBR satellites of the half integer resonance, far 
from the desired tunes are much stronger for the 72° 
optics HELUM72GJ. This can be attributed to the non-
compensated non-linear chromaticity, in particular for the 
optics HELUM72GJ. Figure 1 shows how the driving 
term accumulates for the three optics. One recognizes the 
compensation of IR chromaticity contributions by the 
sextupoles in the arc for HELUMV6. One also notes that 
there is no non-linear chromatic compensation for 
HELUM72GJ and one can see the effect of the intrinsic 
compensation between the two IRs for the optics 
HELUM72SM.  

Table1. Beam Parameters  
Optics HELUMV6 HELUM72  

Phase Adv./FODO [2π] 60 72 
Momentum Compaction 6.81 x 10-4 4.75 x 10-4 
RF Frequency shift [Hz] 0 +350 

Synchrotron Tune -0.061 -.0515 
RMS-Energy Spread 9.54 x 10-4 12.8 x 10-4 

Horizontal Emittance [nm] 42 20 
Long. Emittance [µm] 10.24 15.4 

Long. Beta Function [m] 11.25 9.4 
Beam Energy [GeV] 27.5 

Harmonic number 10560 
RF Voltage [MV] 125 

Synchronous Phase [°] 44.3 
Circumference [m] 6335.826 

 

Table 2: Driving terms of SBR Resonances [m-1/2] 
 Optics/  resonance Qx+Qs Qx+2Qs 2Qx+Qs 
HELUM6V6 5.07E-04 0.088 0.538 
HELUM72GJ 4.68E-04 0.065 2.357 
HELUM72SM 4.22E-04 0.035 1.053 

Table 3:  Widths of SBR (nσ=7)  
 Optics/  resonance Qx+Qs Qx+2Qs 2Qx+Qs 
HELUM6V6 0.000507 0.00467 0.0202 
HELUM72GJ 0.000465 0.00759 0.1136 
HELUM72SM 0.000422 0.00551 0.0502 

 
Figure 1: Build up of the driving term of the satellite 
resonance 2Qx+Qs=q around the circumference 

HIGHER ORDER RESONANCES 
The above considerations do not offer an explanation for 
the operational difficulties with SBR in HERA since 
calculation of resonance strength based on expansion to 
higher order does not provide a noticeable contribution to 
the resonance strength Qx+3Qs=q.  However the 
resonance may be driven by an interference of the 
resonances Qx+2Qs=q and 2Qx +Qs=q. If the tune is not 
close to these resonances, the driving terms can be 
absorbed by a canonical transformation, which generates 
in turn the driving term for higher order resonances. The 
evaluation of the driving terms of such higher order 
resonances involves a double integral around the ring. 
The procedure is described in reference [8]. Comparing 
the build-up of the driving term of the resonance 
Qx+3Qs=q for the optics HELUM72GJ and 
HELUM72SM (figure 2) one can see, that the 3rd order 
satellite is much weaker if the seeding resonance 
2Qx+Qs=q is intrinsically compensated. The absolute 
value of the resonance width is for HELUM72GJ 
approximately Qx+3Qs+q=0.0015 (nσ=7). Thus the space 
around the desired tune is limited by two SBR resonances 
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and the horizontal betatron amplitudes are enhanced by a 
factor of at least 2 for nσ=7.  This produces significant 
enhancement of the positron beam size and explains the 
degradation of the beam lifetime seen in operations. 

CLOSED ORBIT EFFECTS  
Closed orbit distortions may strongly enhance SBR. A 
single kick will generate a closed orbit oscillation and the 
corresponding dipole component in quadrupole magnets 
oscillates in phase, with the betatron frequency. This 
generates a large contribution to the dispersion which 
accumulates around the circumference. The contribution 
is proportional to the accelerator circumference L. It 
oscillates with the betatron frequency and it will drive the 
SBR resonance Qx+2Qs=q. The driving term for this 
resonance samples the dispersion in phase with the 
horizontal betatron oscillation. The corresponding 
contributions to the driving term will accumulate around 
the lattice providing a strong contribution proportional to 
L. Thus an oscillatory closed orbit distortion generates a 
contribution to the resonance strength which is 
proportional to L2.  For a large accelerator like HERA 
with L = 6355.826 m one then expects a large 
contribution to the strength of satellite resonances. The 
contribution to the resonance driving term can be 
estimated for a regular FODO lattice with N FODO cells 
and a circumference L with a horizontal tune of Qx and 
beta functions βx and βs as 
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( x�  is the peak closed orbit amplitude).  
 

 
Figure 2: Build-up of the leading driving term of the SBR 
Qx+3·Qs=q using the formalism of reference [8]. The 
optics HELUM72SM with intrinsic chromatic 
compensation has a considerably reduced resonance 
driving term. 

The result of an exact evaluation for HERA is that an 
orbit oscillation of only 1mm amplitude leads to an 
increase of the resonance strength by a factor of three (see 
figure 3). This analysis explains the extreme orbit 
dependence of the lepton beam lifetime which is observed 
if the HERA electron ring is operated with a working 
point near Qx+2Qs=q. Another strong contribution is 

produced by the asymmetric component of the closed 
orbit at the interaction points (IP) because of the large β.  
If one applies a closed orbit bump of 5mm amplitude with 
an angle at the IP, the resonance strength is increased by a 
factor of two (see figure 4). The conclusion is that HERA 
can only be operated near the desired working point with 
extremely precise orbit control. 

CONCLUSIONS 
The analysis described in the previous sections explains 
the operational difficulties as resulting from SBR. It led to 
cures which now allow HERA to operate safely near the 
desired working point between the 2nd and 3rd satellite 
SBR of the horizontal integer resonance. These measures 
are:  
a) The use of an optic HELUM72SM with 90° betatron 
phase advance between the two IP�s provides sufficient 
headroom near the desired working point. This optics 
provides a reasonable, intrinsically compensated higher 
order chromaticity and suppresses the 3rd order satellite 
resonance. This optics has the additional advantage, that 
the beam-beam beta-beat is cancelled in first order. 
 

 
Figure 3: Contributions to the driving term of the 
resonance Qx+2Qs by closed orbit distortions 

b) Tight closed orbit control during the whole operation 
cycle is provided using orbit stabilization feedback [9]. It 
controls the orbit to a level of 0.1mm and efficiently 
avoids �among other undesired closed orbit effects- the 
generation of a strong contributions to the SBR.  
The initial severe distortion of HERA operation at the 
desired working point after the luminosity upgrade was 
completely removed by these measures. They provide the 
basis for the present high luminosity and high polarization 
operation with the upgraded lattice.  
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