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Abstract

It has been proposed [1] to ‘condition’ an electron beam
prior to the undulator of a Free-Electron Laser (FEL) by in-
creasing each particle’s energy in proportion to the square
of its transverse betatron amplitude, or action. This con-
ditioning enhances FEL gain by reducing the axial veloc-
ity spread within the electron bunch. In this paper we ex-
tend analysis proposed by A. Wolski for requirements to
the conditioner which does not suffer from large emittance
growth. We also present a possible quadrupole-undulator
conditioner, with simulations showing that the emittance
growth can be suppressed in a reasonable length system,
but alignment tolerances are extremely tight.

INTRODUCTION

The most demanding requirement for future X-ray FELs
[2, 3] is the generation of a sufficiently small transverse
electron emittance. To mitigate this problem, ideas have
been proposed to ‘condition’ an electron beam [1, 4].

Previously [5] we presented a system that allows condi-
tioning of the beam on a relatively short length, however,
it suffers from projected emittance growth to the extent
that makes it impractical for application. It was conjec-
tured in Ref. [5] that the emittance growth associated with
conditioning is an inevitable consequence of Hamiltonian
equations of motion. Later A. Wolski [6] pointed out ex-
amples of conditioners which do not suffer from emittance
growth. Unfortunately, all such examples are characterized
by a very small conditioning per unit length of the system.

In this paper we extend analysis proposed by A. Wolski
and apply it to a simple FODO lattice. We show that weak
conditioning in such a system is related to small slippage
of large amplitude particles in the beam, of the order of
(un-normalized) beam emittance. We also present a pos-
sible implementation of a beam conditioner consisting of
a quadrupole undulator and discuss difficulties associated
with implementation of such device.

CONDITIONING AND EMITTANCE

In an FEL undulator, particles with high energy travel a
shorter path (increased axial velocity), while a large beta-
tron amplitude lengthens its path. Conditioning establishes
a correlation which cancels these two effects, resulting in a
reduction of the axial velocity spread, enhancing the FEL
gain. The relative energy conditioning requirement, for
natural undulator focusing, can be written as [1]

δu =
1
2

1
βu

λu

λr
Ju , (1)

where γu is the electron energy in the undulator (in units
of rest mass), βu(= βx = βy) is the constant beta-function
in the undulator, λu is the undulator period, λr is the FEL
radiation wavelength, and Ju = (Jux

+ Juy
) is the 4D

action, or square of the betatron amplitude of the particle.
Let us consider a conditioner consisting of three parts.

First, an RF cavity generates an energy chirp in the beam;
then the beam passes through an optical system delay-
ing particles with large transverse amplitude, introducing
a slippage ∆z proportional to the square of the ampli-
tude; and finally the chirp is removed with another RF
cavity (see Fig. 1). The level of conditioning in such a
system is proportional to the energy chirp and the slip-
page ∆z. The slippage of a particle is given by ∆z =
1
2

∫
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horizontal and vertical coordinates, respectively. The an-
gle x′(z) is expressed in terms of the initial values x0 and
x′0, and the transport matrix elements R21(z) and R22(z):
x′(z) = R21(z)x0 + R22(z)x′0 yielding,
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with a similar expression for the vertical coordinate y (as-
suming uncoupled motion). For conditioning, we require
∆z to be proportional to the sum of Courant-Snyder invari-
ants, ∆z = A(Jx + Jy), where Jx = (γ0x

2
0 + 2α0x0x

′
0 +

β0(x′0)
2)/2, β0, α0 and γ0 are the Twiss parameters in the

horizontal plane at the entrance to the conditioner, with a
similar expression holding for Jy .

The projected emittance growth generated in the con-
ditioner is due to chromatic effects: unless specially de-
signed, the optical system typically introduces energy de-
pendance in β and α which causes a mismatch for particles
of different energies. The resulting emittance growth can
be evaluated using the Bmag beta-mismatch parameter [7],
which gives the ratio of the final and initial emittance due
to a mismatch in β and α functions:
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where β(E) and α(E) are the values at the exit of the con-
ditioner. Assuming a small energy spread, and using a Tay-
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lor expansion of β(E) and α(E), one finds for the emit-
tance increase ∆ε = ε(Bmag−1) the following expression:

∆ε =
εσ2
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,

where σ2
E is the rms energy spread in the beam due to the

chirp. The equation above shows that to avoid emittance
growth in the lowest order, one has to design the system in
a such a way, that ∂αx,y/∂E = 0 and ∂βx,y/∂E = 0. Be-
low we will show, for a simple case of a FODO lattice, that
the requirement of small emittance growth in the system
results in a relatively small conditioning per unit cell.

QUADRUPOLE UNDULATOR

As an example conditioner we take a compact FODO
lattice of quadrupole magnets, as in Fig. 1, forming effec-
tively a quadrupole undulator.

L

∆ψx,y = µ

RF RF

h1 h2
l

(a) (b) (c) (d)

l

LT

Figure 1: Quadrupole undulator FEL beam conditioner.

The exit values of the β function in the FODO lattice are
equal to βmax and βmin in two orthogonal planes, corre-
spondingly. For a FODO lattice,

βmax = 2L
1 + sin(µ/2)

sin µ
, βmin = 2L

1− sin(µ/2)
sin µ

,

where L is the half-cell length and µ is the phase advance
per cell. Note that in this formula µ, and hence βmax and
βmin, are functions of energy E. One can then derive:

1
βmax

∂βmax

∂E
= tan

µ

2
cos µ

2 − 2cot(µ)(1 + sin µ
2 )

E(1 + sin µ
2 )

, (4)

from which it follows that ∂βmax/∂E = 0 at µ = 76.35◦.
However, one can also show that ∂βmin/∂E �= 0 for any
value of µ. Note, that ∂βmax/∂E and ∂βmin/∂E do not
grow with the number of cells in the system.

Using the well known transport matrix for a FODO lat-
tice, one can calculate the slippage of a particle ∆z:

∆z = 2NcJi tan(µ/2) , (5)

where Ji = Jx + Jy and Nc is the number of cells in the
system. Typically, if µ is not close to π, the slippage gen-
erated in one cell per one degree of freedom is of the order
of the beam emittance, since 〈Jx〉 = 〈Jy〉 = ε.

Equation (5) shows that ∆z, and hence conditioning, in-
creases when µ → π. This however causes an increase

of the derivative ∂βmax/∂E and results in large emittance
growth. This situation is qualitatively similar to the one
found in Ref. [5], where conditioning in a relatively short
system generated an enormous emittance growth.

The FODO section requirements are calculated below.
The inverse focal length of a quadrupole magnet is 1/f =
G
e/pi, where G is the focusing magnetic field gradient,

 is the length of the quadrupole magnet, e is the electron
charge, and pi is the longitudinal beam momentum. Using
thin-lens FODO cells we can apply the standard formula:

1/f = G
e/pi =
2
L

sin(µ/2). (6)

Taking the quadrupole length as 
 = L/4, the total
length of Nc cells as LT = 2NcL, and the momentum as
pi = mcγi, the total length of quadrupole undulator is

LT = 4Nc

√
mcγisin(µ/2)

eG
. (7)

The bunch is energy chirped prior to entrance into the
quadrupole undulator (point (a) in Fig.1) according to h1 ≈
σδi

/σzi
, where σδi

is the rms relative energy spread in-
duced by the first RF section and σzi

is the rms bunch
length. This chirp changes each particle’s energy to δ =
h1zi at point (b), where zi is the longitudinal coordinate
within the bunch. The slippage in the quadrupole undu-
lator causes a path length delay, ∆z in Eq. (5), which
produces a new longitudinal position at point (c) of z =
zi + 2NcJitan(µ/2), while the energy is not changed. Fi-
nally, at point (d), after the final reversed RF chirp section,
the particle’s energy becomes

δ = h1zi + h2[zi + 2NcJitan(µ/2)] =
2NchJitan(µ/2), (8)

where h2 = −h1 ≡ h. Equation (8) shows that the energy
is now conditioned, varying with transverse action, Ji.

This conditioned energy spread shrinks when accelerat-
ing from γi up to the FEL energy, γu, but is also amplified
when compressing the bunch from σzi

down to σzu
, pro-

ducing the conditioned energy deviation in the FEL

δu = 2Nch
σzi

σzu

γi

γu
Jitan(µ/2). (9)

Equating this to Eq. (1) to produce the proper level of con-
ditioning for the FEL, and using h = σδi

/σzi
, we have

2Ncσδi

Ji

σzu

γi

γu
tan(µ/2) =

1
2

1
βu

λu

λr
Ju. (10)

This can be solved for the number of FODO cells needed
for conditioning, using the invariant action γiJi = γuJu.

Nc =
1

4σδi
tan(µ/2)

σzu

βu

λu

λr
(11)

This is used in Eq. (7) to calculate the total length of
quadrupole undulator needed.

LT =
1

σδi

σzu

βu

λu

λr

cos(µ/2)
√

sin(µ/2)

√
mcγi

eG
. (12)
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Table 1: FEL parameters for LCLS.
parameter symbol value unit
und. energy/mc2 γumc2 14 GeV
undulator period λu 3 cm
rad. wavelength λr 1.5 Å
und. βx,y βu 30 m
und. bunch length σzu

20 µm

Table 2: Conditioner parameters for LCLS.
parameter symbol case-1 case-2 unit
energy γimc2 100 100 MeV
phase adv/cell µ 135 135 deg
quad gradient G 600 235 T/m
beta max. βmax 220 351 mm
beta min. βmin 10.6 17.0 mm
energy spread σδi

2.5 1.0 %
bunch length σzi

1.0 1.0 mm
N cells Nc 552 1381
total length LT 50 200 m

This length is reduced as µ → π, as the rms energy chirp,
σδi

, is increased, and weakly with higher quadrupole gra-
dients, G, and lower conditioner energy, γi. The large en-
ergy spread in the strong focusing channel adds a signif-
icant chromatic emittance growth as µ → π, ultimately
limiting the choice of µ to somewhat less than π.

Table 1 lists LCLS [2] FEL parameters and Table 2 lists
parameters for its quadrupole undulator conditioner for two
cases: (case-1) an aggressive, short system with strong
quadrupole gradients, and (case-2) a less aggressive system
with weaker gradients and less chirped energy spread.

TRACKING

Both quadrupole undulator conditioners (case-1 and
case-2) of Table 2 are evaluated with particle tracking using
Elegant [8] to 2nd-order. In Fig. 2 the relative energy de-
viation after the case-1 conditioner, at 100 MeV, is plotted
against x position, and its distribution is also shown. The
energy-action correlation is shown in Fig. 3 and agrees rea-
sonably well with the expected slope indicated in Eq. (8).
The spread around the proper conditioning slope is due to
emittance growth through the conditioner. The less aggres-
sive system (case-2) has less emittance growth (∼ 1%), and
produces a more highly correlated, linear conditioning.

When scaled to the FEL energy, as in Eq. (9), the rms
conditioned energy spread at 14 GeV becomes 1.7× 10−4.
The residual energy spread which is not correlated with
the action is at an rms level of 6 × 10−5 (at 14 GeV in
case-1) and should not significantly affect the FEL perfor-
mance. The transverse emittance growth through the case-
1 quadrupole undulator is ∼ 3%, but blows up quickly
with larger energy spread or phase advance. Unfortu-
nately, without room for steering correction in this compact
quadrupole undulator, the transverse alignment tolerances
are quite severe at <0.1 µm.
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Figure 2: Tracking of quadrupole undulator FEL condi-
tioner (case-1), plotting relative energy deviation at 100
MeV vs. x position (left), and energy distribution (right).
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Figure 3: Tracking of case-1 (left) and case-2 (right), plot-
ting relative energy deviation at 100 MeV vs. action, Ji.
The red line is the expected slope in Eq. (8).

CONCLUSIONS

We have shown that FEL conditioning in one FODO cell
is of the order of the emittance and have described a simple
conditioner composed of FODO cells. Such a quadrupole
undulator may only become practical if the extreme align-
ment tolerances can be attained, or a beam-based steering
correction is included in this compact device.

We emphasize that our results are obtained for a beam
matched to the conditioner. One can show the effect of con-
ditioning is increased if the beam is mismatched, however
this causes large projected emittance growth.
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