EPAC'02, Paris 2002

Test of the SOLEIL Superconducting Cavity Prototype on the ESRF Ring

J. Jacob, D. Boilot, G. Debut, J. Pasquaud, M. Rossat, F. Torrecillas, ESRF P. Bosland, P. Brédy, S. Chel, M. Juillard, M. Maurier, A. Mosnier, CEA DSM E. Chiaveri, R. Losito, CERN J.-M. Filhol, SOLEIL

EPAC'02, Paris, June, 2002 Test of SOLEIL SC Cavity Prototype on ESRF Ring, J. Jacob, slide 1

History of the project

- June 1996: Start of a collaboration CEA-DAPNIA / CERN / ESRF
 - Obsign, build and test a strongly HOM damped SC cavity for SOLEIL, optimized for high beam loaded SR light sources
 - ♦ SOLEIL RF frequency: $500 \text{ MHz} \rightarrow 352.2 \text{ MHz}$
 - \rightarrow use CERN-LEP couplers
 - \rightarrow possible application to ESRF
- December 1999: \rightarrow Successful test at CERN: 7 MV/m
- January 2000: \rightarrow Decision to test the cavity prototype with beam at the ESRF
 - \rightarrow Liquid helium from Dewars
 - \rightarrow Passive operation at 300 K for normal User Service Mode

EPAC'02, Paris, June, 2002

History, continued ...

۲

- January 2002: \rightarrow Installation on the ESRF storage ring
 - \rightarrow Cavity tested at 300 K with beam
 - \rightarrow 4 tests periods at 4K, following shut downs:
 - March, May, August, October 2002
 - 1 week required to cool down
 - Tests at 4 K during machine restart time
 - Cavity warmed up before beam delivery to users
 - \rightarrow 2 test series at 4 K already performed
- December 2002: \rightarrow Straight section needed for a beam line under construction
 - \Rightarrow SC cavity to be removed from the ESRF storage ring

HOM free SC cavity for SOLEIL

- Extremely low R/Q for all modes
- Accelerating mode R/Q = 2 x 45 Ω \rightarrow superconducting \Rightarrow 5 MV
- 400 mm diameter between cells \Rightarrow HOM power extracted with conventional HOM couplers
- No need for ferrite absorbers in the beam tube \Rightarrow possible vacuum contamination avoided
- Open structure \Rightarrow efficient pumping through the extremities
- Expected good vacuum performance \Rightarrow expected high reliability \rightarrow essential for light sources
- First application of CERN technology of Nb plated Cu to a cavity for high beam loading

EPAC'02, Paris, June, 2002

Extremely high Longitudinal CBI thresholds for the ESRF

Monopole modes								
ESRF 5-cell copper cavity			SOLEIL SC-cavity					
f _H /[MHz]	R/Q [Ω]	Q _{ext}	lthresh [mA]	f _H /[MHz]	R/Q [Ω]	Q _{ext}	lthresh [mA]	
500.2	73	30000	91	587	1.1	180	858648	
908.4	23	36000	133	596	3.8	470	93754	
				611	10.3	10	1585769	
				637	0.1	1000	1566675	
				669	7.8	13	1471141	
				702	8	400	44425	
				724	1.3	1000	106032	
				746	0.3	3300	135128	
				791	0.8	2000	78854	
				854	0.3	1700	229134	

EPAC'02, Paris, June, 2002

Installation on the ESRF storage ring

EPAC'02, Paris, June, 2002

SC Cavity delivered at ESRF on 30th October 2001

EPAC'02, Paris, June, 2002

Only 1 month for huge preparation work ...

Local clean room class 100 quality implemented at ESRF to mount the Ti sublimation pumps

... to prepare a first cryogenic test and validate the cooling scheme with the cavity outside the tunnel on 30^{th} November 2001 (general rehearsal)

EPAC'02, Paris, June, 2002

Vacuum configuration

- Main tapers: \rightarrow lossy stainless steel 430: to absorb HOM above 1.5 GHz
 - \rightarrow water cooled
 - \rightarrow 500 l/s ion pumps with Ti sublimators: close to the cavity
 - sublimators activated regularly during machine interventions
- Isolation valves: \rightarrow connection to the ring without venting
- Schielded belows
- Photon absorbers: \rightarrow prevent synchrotron light from hitting the Nb/Cu structure
 - \rightarrow water cooled
 - \rightarrow 150 l/s ion pumps
- Penning gauges: \rightarrow on tapers and on each RF power coupler
 - \rightarrow connected to fast RF interlock system to protect windows against sputter deposition of metal
- EPAC'02, Paris, June, 2002 Test of SOLEIL SC Cavity Prototype on ESRF Ring, J. Jacob, slide 9

EPAC'02, Paris, June, 2002

Connection to the 3rd RF transmitter

• Waveguide system, switching between

 \rightarrow NC cavities 5 & 6 in cell 25

 \rightarrow SC cavity module in cell 23

- Easy adaptation of standard RF control system to the SC module
- Temperatures at several strategic points monitored and interlocked for operation at 300 K
- Interlock also for vacuum, GHe cooling, RF signals, ...
- At 4 K: validation of interlock from existing SOLEIL cryogenic control cabinet (developed for CERN tests and adapted to operation at ESRF with Dewar)
- Existing software frequency tuning control adapted to SC cavity

Waveguide distribution above the tunnel

EPAC'02, Paris, June, 2002

Test of SOLEIL SC Cavity Prototype on ESRF Ring, J. Jacob, slide 12

Cooling plant for the ESRF Tests

EPAC'02, Paris, June, 2002

EPAC'02, Paris, June, 2002

Performance of the cooling and cryogenic system

- GHe cooling: \rightarrow maximum 40 Nm³/h
 - \rightarrow 15 Nm³/h sufficient in passive operation at 300 K to remove a maximum of 83 W of heat load
- GHe Pre-cooling: $\rightarrow 10 \text{ Nm}^3/\text{h}$: Nb/Cu Temp $\rightarrow 110 \text{ K}$ after 6 days (most heat evacuated without waste of LHe)
- LHe Cooling: → started 1 day before machine restart
 → 24 hours at 45 l/h exploiting cold gas cooling
 → 3.5 hours at 200 l/h to fill the cryostat with LHe
 → 17 hours at 160 l/h in steady SC state at 4 K
- Unexpected high static losses of 117 W:
 - \rightarrow Super isolation degraded after many manipulations during R&D phase at CERN
 - \rightarrow A cold shield seems necessary for the final design

EPAC'02, Paris, June, 2002 Test of SOLEIL SC Cavity Prototype on ESRF Ring, J. Jacob, slide

Estimated heat load for passive operation at 300 K (prior to installation on the ring)

• Cavity detuned by thermal expansion at 300 K:

 $\rightarrow f_{resonance} = f_{rf} - 3.4 f_{revolution}$

→ excellent parking position: little power extraction from beam harmonics, also in partial filling

PREDICTION: by thorough computation of fundamental and HOM power up to highest frequencies, for all standard ESRF fillings:

- \rightarrow HOM dampers & main RF couplers
- \rightarrow Tapers
- $\rightarrow\,$ in small proportion also in warm Nb/Cu structure: max 200 \ldots 300 W

Measured vacuum conditioning in passive operation at 300 K

EPAC'02, Paris, June, 2002

Test of SOLEIL SC Cavity Prototype on ESRF Ring, J. Jacob, slide

17

SC Cavity Pressure at 300 K with beam: unbaked system !

EPAC'02, Paris, June, 2002

SC Cavity Temperature at 300 K with beam

4 sensors: internal beam tubes a few °C higher than external tubes

EPAC'02, Paris, June, 2002

SC cavity transparent to the beam in passive operation at 300 K

• Measured power extracted with 15 Nm³/h GHe from the cryostat:

\rightarrow In 16 bunch	90 mA	$\Delta T = 16 \ ^{o}C$	P = 83 W
\rightarrow In single bunch	19 mA	$\Delta T = 5 \ ^{o}C$	P = 26 W
\rightarrow In multibunch	200 mA	$\Delta T = 8 \ ^{o}C$	P = 42 W
below predictions !			

- Satisfactory Vacuum pressure in all modes
- Maximum 50 W extracted from dipole HOM couplers in 16 bunch at 90 mA
- No sign of coherent HOM driven instability
- Only 2 beam trips in 5 months due to the system: could not clearly be attributed to the cavity itself

First test results with the SC cavity at 4 K

- Passive operation at 4 K with 200 mA of beam
 - \rightarrow No sign of HOM driven instability \Rightarrow HOM power effectively absorbed in the dampers
 - \rightarrow No detectable increase in LHe consumption
- RF voltage conditioning
 - \rightarrow 2.2 MV achieved in CW so far
 - \rightarrow 5 MV achieved with short RF pulses
 - \rightarrow Conditioning speed limited by coaxial line of one dipole HOM coupler:
 - ♦ Coupler notch filter not well tuned coupling to fundamental mode
 - Solution Break downs in the coaxial line: needs inspection at next shut down
- Storage of 6 mA of beam and 17 hours lifetime with
 - \rightarrow 3.3 MV from NC existing RF system: (well below U0/e = 5 MV/turn)
 - \rightarrow 2.1 MV from SC SOLEIL cavity \Rightarrow first beam acceleration on 30th May 2002

EPAC'02, Paris, June, 2002 Test of SOLEIL SC Cavity Prototype on ESRF Ring, J. Jacob, slide

CONCLUSION

The test of the prototype SC SOLEIL cavity is progressing well

- Passive operation of a SC cavity at **room temperature** on a high intensity storage ring has been demonstrated:
 - \rightarrow The warm SC cavity is transparent to the beam in any ESRF standard filling
 - \rightarrow Only little power has to be evacuated from the cryostat (< 100 W)
- Achievements after 2 test periods at 4 K in March and May 2002:
 - \rightarrow 17 hours of stable operation at 4 K with liquid helium from Dewars
 - \rightarrow The detuned cavity at 4K is transparent to 200 mA of beam
 - \rightarrow The SC cavity module is conditioned up to 2.2 MV
 - \rightarrow First beam has been accelerated with the SOLEIL cavity
- 2 more test periods at 4 K are planned in August and October 2002:
 - \rightarrow Solve the problem with the coaxial HOM line
 - \rightarrow Further conditioning to 4 MV
 - \rightarrow Accelerate higher beam currents

EPAC'02, Paris, June, 2002

Acknowledgement

The contribution of many colleagues from CERN, CEA-DSM, and ESRF is greatly acknowledged. Special thanks are addressed to the CEA, CNRS and ILL in Grenoble for the liquid helium supply and the helium gas recuperation.