

Presented by L. Walckiers CERN/LHC-MTA

Contributors : L. Bottura, M. Buzio, S. Fartoukh, S. Russenschuck, S. Sanfilippo, W. Scandale, F. Schmidt, E. Todesco, R. Wolf

1

Goals of the Presentation

7 LHC Preseries Dipoles Measured (a) 1.9 K **Field Quality Compared to Predictions [14 Apertures]** Computed **Iron Saturation Hysteresis & Persistent Current Ramp rate effects due to Interstrand Resistance Expected from Prototypes : Decay & Snap-Back**

Compared with Beam Optics Requirements

The SM18 Test Station

Multipole field expansion in the complex plane.

2-D plane field in the current-free region of the magnet aperture

Dipole Strength and Direction

Spread of the strength (r.m.s.)

- **6.4 unit** *ⓐ* injection
- **5.5 unit** *a* collision

Field Direction

Twist : 1.1 mrad meas. 3 mrad allowed

Co-linearity : 0.5 mrad meas. 0.8 mrad allowed

=

8 unit allowed

Multipole Measured & Allowed

Injection

Collision

!! b_5 @ injection

 $b_3 @$ collision !!

EPAC'02 , June 5, 2002

•Change of cross-section: effect on b_3

 Control limits computed with correlations to measures at 1.9 K

Correction worked as expected: we are inside the spec

Drift (under investigation) observed from magnet 1 to 15

High Field Effect - Dipole

Small discrepancy between calculation & measurement

EPAC'02 , June 5, 2002

Louis.Walckiers@Cern.ch

b₃ & **b**₅ Saturation effect

Substantial deformation due to Lorentz Force

A typical LHC operation cycle

Magnetization @ Injection Field

Multipole	Measured		Calculated	
[Unit]	Average	Spread	Average	Spread
b ₁	-2.19	1.78	-5.43	0.33
b ₃	-7.31	0.31	-7.97	0.11
b ₅	1.12	0.16	1.09	0.02
b ₇	-0.39	0.027	0.43	0.007

Discrepancy (high for small n) under investigation

Ramp Rate Effect

SC Rutherford cable in transverse field

EPAC'02 , June 5, 2002

Eddy current in a LHC dipole Cross-section

Ramp Rate Effect in Prototype Dipoles Interstrand resistance < 10 $\mu\Omega$

Normal quadrupole during ramps

Normal sextupole during ramps

Ramp Rate Effect in Preseries Dipoles

R&D to Control & Increase Interstrand Resistance $R_{i.s.}$ Specified > 15 $\mu\Omega$

Measured $R_{i.s.}~$: from 30 $\mu\Omega$ to more than 100 $\mu\Omega$

Multipole	Measured	l @ 10 A/s	
[Unit]	Average	Spread	
b ₃	0.05	0.13	$\Delta b_3 = 0.02$ unit $\Rightarrow \Delta Q' = 1$ unit
b ₅	0.001	0.042	$\Delta b_5 = 0.2 \text{ unit} \Rightarrow 1 \sigma \text{ on D.A.}$

Decay during Injection Snap-Back @ Acceleration Start

Decay & Snap-Back : Sextupole

 $\Delta b_3 = 0.02$ unit creates $\Delta Q' = 1$ unit

Decay & Snap-Back

Multipole	Measured		
[Unit]	Average	Spread	
b ₃	1.6	0.47	$\Delta b_3 = 0.02 \text{ unit } \Rightarrow \Delta Q' = 1 \text{ unit}$
b ₅	-0.3	0.1	$\Delta b_5 = 0.2 \text{ unit} \implies 1 \sigma \text{ on D.A.}$

Conclusions

Transfer function, Field Direction

O.K.

High Field Effects depend on Iron Saturation + Lorentz Forces

Multipoles b3, b5 improvement to verify @ 1.9 K

- **Injection Field** = Persistent Current (+ ?)
- **E Ramp Rate Effects** Cla

Clear Improvement since Prototypes

Decay & Snap-Back

Delicate to control

