

HOM Beam Coupling Measurements at the TESLA Test Facility

G. Devanz, M. Jablonka, C. Magne, O. Napoly, CEA, Gif-sur-Yvette M. Huening, M. Wendt, DESY, Hamburg

- I. HOMs of TTF modules
- II. Dipole 3rd band
- III. Higher HOM bands
- IV. Beam position measurement with HOMs
- V. Conclusion

TTF 9-cell cavity HOMs

Beyond cutoff = no propagation mode properties easy to compute for one cavity.

ex: M1,M2 bands D1,D2 bands

Above cutoff = propagation

BUT trapped mode may exist (high Q)

difficult to predict field distribution for whole module since mode properties depend both on individual cavity characteristics on beam tube, couplers

ex: D3 band

Effects of HOM

beam looses energy into HOMs, mostly on monopole

- extra cryogenic power
- energy spread much smaller than σ_{E} due to RF stabilisation
- off-axis particles receive kicks from dipole HOMs
 - Beam Break-Up depends on frequency distribution among cavities
 - emittance growth

Tilt of cavities

monopole modes transverse component when projected on beam trajectory

beam receives an extra kick

interaction with beam depends on (r/Q)

➤ HOMs close to light cone are likely to interact strongly with beam interaction with beam depends on stored energy

high Q HOM are more dangerous

Damping of high (r/Q) HOM is mandatory

HOM damping

HOM Couplers

- extract HOM power out of cryomodule = reduce stored energy
- design HOM couplers in order to get $\mathsf{Q}_{\mathsf{ext}}$ as low as possible for SC cavities, $Q_0 >> Q_{ext}$ so $Q_L = Q_{ext}$
- SC couplers to reduce RF losses
- 2 couplers per cavity

DESY

SACLAY

G. Devanz CEA-Saclay EPAC02

Beam-HOM interaction

single bunch, charge q \rightarrow HOM ($\omega_0, Q, r/Q$)

cavity voltage just after bunch passage $V_0 = 2 k q - k \log t$ factor then decays like $e^{-t/\tau} - \tau = Q/\omega_0$

Bunch train , frequency $f_b \rightarrow HOM$ (ω_0 , Q , r/Q)

Single bunch signals add up

-7.5

for most modes in TTF $\tau \ge f_b >> 1$: small decay between bunches

time dependant part of generated voltage depends on $\textit{\omega}_{\!0}$, $\textit{Q}\;$ and $\;\textit{f}_{\!b}\;$ steady state :

$$P_{\rm train}$$
 = $P_{\rm single \ bunch}$ x F ($\textit{\textbf{$\omega_0$}}$, $\textit{$Q$}$, $\textit{$f_b$}$)

HOM measurements @ TTF

GOAL :

- check that damping requirements are met $Q_{ext} < 10^5$
- look for unexpected dangerous modes

METHODS to excite HOM at resonance with beam :

• Use beam harmonics and detune the cavity by Δf

$$f_{HOM} = m f_{Beam} \pm \Delta f$$

• beam charge modulation $f_{mod} \rightarrow$ tunable sidebands (S. Fartoukh)

 $f_{HOM} = m f_{Beam} \pm f_{mod}$

Dipole HOM excitation

Wake Potentials :

$$\begin{split} & W_{\parallel} \propto (r/Q) \times r_0^m r_1^m \times \cos m(\theta_0 - \theta_{\mathsf{HOM}}) & \to & \mathsf{HOM \ couplers} \\ & W_{\perp} \propto (r/Q) \times r_0^m r_1^{m-1} \times m \cos m(\theta_0 - \theta_{\mathsf{HOM}}) & \to & \mathsf{BPM} \end{split}$$

TTF dogleg magnet operates only in *x*-plane : $\delta x = \pm 2$ cm

monopole dipole quadrupole $m = 0 : P_{HOM} \propto \delta x^{0}, \delta x_{BPM} = 0$ $m = 1 : P_{HOM} \propto \delta x^{2}, \delta x_{BPM} \propto \delta x$ $m = 2 : P_{HOM} \propto \delta x^{4}, \delta x_{BPM} \propto \delta x^{3}$

3rd dipole passband high Q HOMs

HOM : f = 2.585 GHz , $Q = 10^6$ measured with 216 MHz Injector #1 in Module 1, in 1998.

HOM f = 2.575794 GHz, Q=2 10⁶ measured with modulated 54 MHz beam Injector #2

D3 passband module III

HOM freq. with beam	Modulatio n freq.	HOM freq. with N.A.	Q with beam	max. sig	HOM nal	cpl	Q with N.A.	R/Qcosø with beam	Co-excited bands	Co- excited cavities	HOM Urr	freq. nel	R/ Un	/Q nel
[GHz]	[MHz]	[GHz]		-dE	Зm			[<u>Ω</u> .cm-2]			mm [G	iHz] ee	[<u>Ω</u> .c	m-2]
2.568617	22.785	*2.568623	8.4 10 ⁴	25	25	1	*7.4 10 ⁴			all				
2.568620	22.788	*2.568623	8.4 10 ⁴	28	28	2	*7.4 10 ⁴		d4, q2	all				
2.575679	24.324		2.9 10 ⁵	15	42	1								
2.575675	24.324		2.9 10 ⁵	21	46	2			d5, q2, q1	all				
<mark>2.575794</mark>	<mark>24.205</mark>	<mark>*2.575795</mark>	<mark>2.9 10⁵</mark>	<mark>8</mark>	8	<mark>1</mark>	<mark>2.6 10⁵</mark>	<mark>7.4</mark>		all	<mark>2.5630</mark>	<mark>2.5745</mark>	<mark>1.4</mark>	<mark>7.3</mark>
<mark>2.576016</mark>	<mark>23.983</mark>		<mark>3.0 10⁵</mark>	<mark>8</mark>	<mark>49</mark>	<mark>1</mark>	_	<mark>9.9</mark>		all	<mark>2.5630</mark>	<mark>2.5745</mark>	<mark>1.4</mark>	<mark>7.3</mark>
2.576224	23.775		8.8 10 ⁴	17	46	2			d3, q1	all				
2.577211	22.788		1.3 10 ⁵	8	8.8	2				all				
<mark>2.578136</mark>	<mark>21.863</mark>		<mark>1.6 10⁵</mark>	<mark>8</mark>	<mark>50</mark>	<mark>1</mark>		<mark>21.1</mark>		<mark>1, 2, 3</mark>	<mark>2.5774</mark>	<mark>2.5836</mark>	<mark>23.5</mark>	<mark>18.6</mark>
2.578274	21.725	*2.578277	1.5 10 ⁵	8	21	1	*6.5 10 ⁴		many	all	2.5774	2.5836	23.5	18.6

* measured by Ch. Magne through all module (24/03/01)

Work by M. Dohlus et al. : **Poster TODAY : WEPRI081 - Higher Order Mode Absorption in TTF Modules in the Frequency Range of the Third Dipole Band**

Full RF modelling of TTF module taking into account :

detuned cavities within the module detailed modelling of HOM and power couplers

Reproduces measured D3 S parameters accurately

DESY and SACLAY HOM couplers damping of V & H polarisation differ -> homogenous module (1 type of coupler) ->1 polarisation may not be damped

Remedies :

A - 2 coupler types + better cavity shape control (no frequency spread)

B - use mirrored geometry of upstream HOM DESY coupler

Solution B computed :

All D3 modes with Q < 10^5 Damping still OK for D1 & D2

D5 passband

High Q modes

Q = 1.7 10⁷

 $Q = 3.4 \ 10^7$

Automated measurement procedure triggered by BPM signal:

For a given f_{mod} quadrupole modes are co-excited

- \Rightarrow BPM signal is dominated by quadrupole kick
- \Rightarrow No r/Q can be estimated from BPM

Alternate method to estimate r/Q: use HOM RF signal

If HOM with $r/Q > 1 \Omega/cm^2$ exist, output levels of the order of 0 dBm are predicted BUT no such levels were observed : -40 dBm on average

Possible scenarii

- only harmless modes
- dangerous HOM with vertical polarisation ⇒ HOM not excited

D5 passband (3)

• HOM RF signal is filtered at $m f_{\text{beam}} + f_{\text{mod}}$ at max. BPM signal which may be different from f_{HOM} of dipole mode \Rightarrow off resonance

\Rightarrow incoherent regime : last bunches may have taken mode energy \Rightarrow start of decay at lower power

HOM couplers as BPMs

Output power from a dipole mode (2 polarisations) in a cavity:

$$P_1 = C_1 \quad \mathbf{x}^2 \qquad \Rightarrow \quad \mathbf{r}^2 = \mathbf{P}_1 / \mathbf{C}_1 + \mathbf{P}_2 / \mathbf{C}_2$$
$$P_2 = C_2 \quad \mathbf{y}^2$$

If HOM $\mathit{f}, \mathit{r}/\mathit{Q}$ and Q are known, so are C_1 and C_2 :

1 power measurement \Rightarrow **r**

2 power measurement with known beam offset $\delta x \implies x$ and y

repeat for each cavity \Rightarrow orbit inside the module

Minimising the dipole HOM output power = align beam on cavity axis

HOM couplers as BPMs

June 3 2002

Cable calibration

Cables inside cryostat reflection measurement with network analyser

Cables outside cryostat : attenuation measurement with power-meter

Check on monopole HOMs

GOAL

- check calculations
- check cable attenuation

Choose HOM :

- well known HOM ⇒ non propagating bands
- high r/Q to get strong signal (for this experiment, all modes excited off resonance)

D1 & D2 band highest *r/Q* modes

	frequency	computed r/Q	Q range (meas.)
TE111_6	~1.705 GHz	11.067 Ω/cm ²	5.3 10 ³ - 4.0 10 ⁴
TE111_7	~1.730 GHz	15.570 Ω/cm ²	3.3 10 ³ - 1.1 10 ⁴
TM110_4	~1.865 GHz	$6.365 \ \Omega/cm^2$	1.4 10 ⁴ - 6.9 10 ⁴
TM110_5	~1.875 GHz	$8.977 \ \Omega/cm^2$	1.8 10 ⁴ - 1.4 10 ⁵

High gradient in cavities (~ 20 MV/m) \Rightarrow orbit is expected to cross axis if entering the module with an offset

Ideal case is to crosscheck with 2 modes

Systematic scans led to the discovery of high Q modes and launched interesting studies for 3rd passband

No evidence for dangerous HOM in the other passbands although high-Q modes exists, especially in the 5th passband

HOM study in Superstructures planned this summer

Possibility to use cavities as BPMs : low resolution only, very dependent on mode distribution in cavities, guide to beam steering