Measurement of Resistivity Dominated Collimator Wakefield Kicks at the SLC

M.Seidel, DESY D.Onoprienko, Brunell Univ. UK, P.Tenenbaum, SLAC

June 4, 2002

- Motivation for the Experiment
- Principle of the Experiment
- Geometric and Resistive Wakefield Kicks
- Theoretical and Measured Results
- Discussion

Motivation

- in linear colliders (also FEL's) small gap collimation is needed; induced wakefields (geometric, resistive) are critical for beam emittance and lead to jitter amplification
- theory of short range wakefields is complicated; numerical calculations are difficult
- measurements, if possible, are more direct !
- graphite as spoiler material is excellent from mechanical point of view; low conductivity is one of the problems → reliable prediction of resistive wall wakefield is important

Spoiler and Absorber Concept

function: halo cleaning; machine protection problems: full beam survival; transverse wakefields

 $E \approx 250 \,\text{GeV}$ $P \approx 10 \,\text{MW}$ ters $\sigma_x \times \sigma_y \approx 150 \times 7 \,\mu\text{m}^2$ spoiler gap $\approx 1 \,\text{mm}$ spoiler thickness ≈ 0.5 radiation length

Typical Parameters at spoiler:

Principle of the Experiment

- use the high quality damped SLC beam in sector II
- beam trajectory is measured upstream and downstream of the collimator pair
- center of mass kick at collimator is determined for different vertical center offsets of the collimator

Mechanical Layout

- aluminum cassette with 5 remotely interchangeable inserts
- precision vertical position adjustment
- beam view:

In Reality...

M. Seidel, DESY, EPAC 2002

Material Properties

we use a high density graphite with good vacuum properties (after baking at 400°C)

Selected parameters for copper and graphite.

	density	conductivity	skin-depth at
	$[g/cm^3]$	$\left[\Omega^{-1}\mathrm{m}^{-1}\right]$	$500 \mathrm{GHz} \; [\mu \mathrm{m}]$
Copper	8.9	$5.9\cdot 10^7$	0.1
Graphite	1.95	$5.5 \cdot 10^4$	3.0

Beam Properties

- damped SLC beam at 1.19 GeV, $\gamma = 2330$
 - $\varepsilon_x = 15 \text{ nm} \quad \varepsilon_y = 0.8 \text{ nm} \\ \sigma_x = 200 \,\mu\text{m} \quad \sigma_y = 50 \,\mu\text{m} \\ \sigma_z = 650 \,\mu\text{m}$
- bunch charge: $2 \cdot 10^{10}$, 9Hz
- typical scan: 15 (vertical motion) \times 25 (pulses); all automated with correlation plot feature of operating system

Geometric Wakefield Kick

Transverse Geometric Wakefield Kick, averaged over Gaussian Bunch, see G.V.Stupakov, SLAC-Pub-8857 (2001)

long taper:

for
$$0.2 \frac{\theta_t h^2}{\sigma_z g} (\approx 18!) < 1: \quad \frac{\langle \Delta y' \rangle}{y_0} = \frac{2\sqrt{\pi}\theta_t h N_p r_e}{\sigma_z \gamma g^2}$$

short taper - diffraction, neglects taper \rightarrow expect overestimation:

$${\langle \Delta y'
angle \over y_0} \; = \; {4 N_p r_e \over \gamma g^2}$$

M. Seidel, DESY, EPAC 2002

Resistive Wakefield Kick

see A. Piwinski, DESY-94 068 (1994):

$$\left\langle \Delta y' \right\rangle = \frac{\Gamma(\frac{1}{4})}{\sqrt{2}} \frac{N_p r_e}{\gamma} \frac{1}{\sqrt{\sigma_z \sigma Z_0}} \cdot \left[l_f \frac{\sin\left(\frac{2\pi y_0}{g}\right) + \frac{2\pi y_0}{g}}{g^2 \left(1 + \cos\left(\frac{2\pi y_0}{g}\right)\right)} + \frac{2l_t}{g_0 - g} \left(\frac{\tan\left(\frac{\pi y_0}{g}\right)}{g} - \frac{\tan\left(\frac{\pi y_0}{g_0}\right)}{g_0}\right) \right] \\ \left\langle \Delta y' \right\rangle = a \cdot y_0 + b \cdot y_0^3 + O\left(y_0^5\right)$$

 \rightarrow use cubic fit-function

Measured Deflection Curves

the fit functions contain a linear and a cubic term; the linear coefficient is compared to theory

Comparison with Theory

Predicted geometric and resistive kick angles in $[\mu rad/mm]$:

collimator	resistive part			geom part	sum
	taper	flat	tot		
short copper	0.001	0	0.001	6.7	6.7
short graphite	0.67	0	0.67	6.7	7.4
long graphite	0.67	6.1	6.8	6.7	13.5

Measured kick angles and inferred resistive part obtained by subtracting the kick of the copper jaws, in $[\mu rad/mm]$:

collimator	measured total	inferred resistive
short copper	2.6 ± 0.3	(0)
short graphite	3.9 ± 0.3	1.3 ± 0.6
long graphite	10.8 ± 0.4	8.2 ± 0.7

Discussion

- result for graphite, gap width 3.8 mm, flat length of 4 inches, taper angle of 10°: $w_{\perp} = 3 \pm 0.3 \text{ V/pC/mm}.$
- geometric theory not well applicable for this taper angle; diffraction formula overestimates; resistive theory agrees relatively well
- graphite wakefield may be too strong for linear collider application \rightarrow coating or different material
- better faith in theoretical predictions for other materials
- planned: dependence on bunch length; smaller taper angles

Thanks to the colleagues at SLAC for the great collaboration on this subject!

