

Intense Ion Beams from relativistic laser plasmas – a promising acceleration mechanism

E. Brambrink

- M. Allen A. Blazevic J. Fuchs J.-C. Gauthier S. Karsch H. Ruhl
- GENERAL ATOMICS

P. AudebertT. E. CowanM. GeißelM. HegelichM. RothT. Schlegel

Ultra High Intensity Laser

Discovery of intense Proton beams at the Petawatt Laser

10¹³ Protons per shot Energy up to 50 MeV Time < 10 ps I >50 MA

Experimental Setup

Laser: Luli 100 TW Laser System 30-35 J in 300-500 fs Intensity: 5x10¹⁹ W/cm²

Diagnostics: Proton spectrometer Thomson parabola RCF Neutron TOF Nuclear activation

Beam parameters

RCFs placed behind the target show homogenous spatial distribution and energies > 25 MeV

10¹² Protons Time < 10 ps Energy > 25 MeV

Transverse beam profile

- Experiments at Petawatt showed normalized emittance < 0.53 π mm mrad (limited by detector resolution)
- Improved diagnostic at LULI could lower this value to 0.06π mm mrad

Structured Targets

Structures on the backside of the target shape the accelerating electric field and the proton beam

The profile is kept due to the beam quality

6 MeV 10 MeV

⇒ Beam profile can
be shaped by specially
designed targets

Influence of the laser focus

Asymmetric laser focus produces an asymmetric proton beam

Ion distribution

Proton beam shaping possible with a suitable laser focus

Acceleration of Ions

Ions are shielded by the accelerated protons

 \rightarrow Removing the hydrogen of the target by heating

Proton radiography

Due to the proton-matter interaction proton radiography can shadowgraph light ions in an enviroment of heavy material

⇒Complementary diagnostic to x-ray radiography

Cu-wires 250 µm Steel Hohlraum 300 µm wall thickness Ti - layers 100µm Epoxy-ring 1.5mm Glass semi - spheres 900 µm dia., 20 µm wall

Laser accelerated protons with their excellent beam quality offer radiography with high spatial and temporal resolution

Electric field mapping

-Direct mapping of electric fields with high temporal resolution

-Different time of flight for different energies offers mapping at different times in one shot

+30 ps

M. Borghesi *et al.* Plas. Phys. and contr. Fusion **43**,A267 (2001)

Pulsed neutron source

Accelerated deuterons are used for $D+D \rightarrow {}^{3}He+n$ reactions

Injector for accelerators

Laser accelerated ions could be an alternative for classical ion sources and injectors

Advantages:

- Beam parameters and quality are comparable or better
- Smaller size and easier to operate

Open questions:

- Phase space matching
- Low repetition rate

Phase space matching

Transverse:

- Large divergence requires strong focusing quadrupoles ($B\sim 2.5 T$)

Longitudinal:

- use only a small part of energy spectrum for classic accelerators ($5x10^9$ at 20 MeV)

- high gradient accelerator (DWA)

Laser improvement

- Practical applications require high repetition rate
- Repetition rate limited by cooling time due to inefficient pumping with flash lamps
- → Pumping of the laser with laser-diodes

POLARIS project (Jena, Germany):

150 J in 150 fs \rightarrow 1 PW

0.1 Hz repetition rate

Conclusion and Outlook

- Ion beams from relativistic laser plasmas have unique properties
- Beam shaping possible (focus, target)
- Serveral applications (radiography, fast ignitor, neutron source)
- Alternative for classical injectors in special cases

Thanks to

Abel Blazevic, Matthias Geißel, Markus Roth, Theodor Schlegel Gesellschaft für Schwerionenforschung, Darmstadt

Patrick Audebert, Julien Fuchs, Jean-Claude Gauthier Laboratoire pour l'utilisatoin des laser intense, Paliseau

Stefan Karsch, Manuel Hegelich, Alexander Pukhov Max-Planck-Institut für Quantenoptik, Garching

Tom Cowan, Matt Allen, Hartmut Ruhl General Atomics, San Diego

Laser staff of LULI

Supported by EU programm Nº HPRI CT 1999-0052