

The SNS Linac and Storage Ring: Challenges and Progress Towards Meeting Them

N. Holtkamp for the SNS Collaboration * Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37830, USA

SNS Accelerator Systems Division

Oak Ridge

More than 31 SNS Presentations in this conference

THPLE020 - Algorithms for the SNS MEBT Commissioning* WEPRI117 - An Improved Impedance Model of Metallic Coatings THPLE013 - Upgrading the SNS Compressor Ring to 3 MW THPLE023 - Finite Element Analysis And Frequency Shift Studies for The Bridge Coupler of The Coupled Cavity Linear Accelerator of The Spallation Neutron Source THPDO016 - High Power RF Tests on Fundamental Power Couplers for the SNS Project TUPLE101 - High Level RF for the SNS Ring WEPRI036 - Measurements of the coupling impedance of the SNS extraction kickers THPLE016 - Proton Beam Halo Intercept Design in the SNS HEBT Line TUPDO037 - A Narrow Quadrupole for the SNS Accumulator Ring THPLE017 - SNS Beam in Gap Cleaning and Collimation, S. Cousineau THPLE021 - Spallation Neutron Source Application Programming Environment, WEPLE057 - Exploring Transverse Beam Stability in the SNS in the Presence of Space Charge TUPLE068 - SNS Extraction Kicker System and First Article BPFN Test TUPDO008 - Series Production of Accelerator Cavities for the Spallation Neutron Source THPLE011 - Accelerator Physics Model of Expected Beam Loss along the SNS Facility WEPLE037 - Coupling Correction for the SNS Accumulator Ring THPDO025 - Input Coupling and Higher-Order Mode Analysis of Superconducting Axisymmetric Cavities for the Rare Isotope Accelerator TUPDO039 - Elimination of Digitizing Errors in a Rotating Coil Mapper TUPDO038 - Characterization of a SNS Transfer Line Dipole WEPRI061 - Application of UAL-Based Correction Schemes to the SNS Accumulator Ring WEPLE055 - The SNS Ring Dipole Magnetic Field Quality THPLE012 - Commissioning of the SNS Front-End Systems at Berkeley Lab THPRI079 - Progress in Laser Beam Profile Monitor Development TUXGB001 - State of the Art of Multicell SC Cavities and Perspectives THPLE019 - Enhancing Surface Ionization and Beam Formation in Volume-type H- Ion Sources TUPLE119 - Development of 805-MHz Pulsed Klystrons for SNS WEPDO006 - Simulation Results for the Electron Cloud at the PSR and SNS THPRI071 - Tune Measurement in the SNS Ring MOPLE107 - 1.12 MVA Peak Two Quadrant Pulse Switch Mode Power Supply for SNS Injection Bump Magnet THPDO015 - Superconducting Prototype Cavities for the Spallation Neutron Source (SNS) Project THPLE024 - Selected Aspects of the SNS-Linac Performance

SPALLATION NEI

The Spallation Neutron Source Partnership

Development of Neutron Science Facilities

(Updated from Neutron Scattering, K. Skold and D. L. Price: eds., Academic Press, 1986), and Statement of the statement of th

SNS Accelerator Systems Division

SNS is the Forefront Facility for Future High **Beam Power Accelerators**

Front-End Building Highest Beam Klystron Building Power **Central Helium** Liquefaction **Linac Tunnel** Building worldwide **Radio-Frequency** under Facility construction Support | Buildings Stepping stone to next **Central Laboratory** and Office Complex generation **Spallation** Joint Institute for **Neutron Sciences** Sources

Ring Target **Future Target** Building **Center for** Nanophase Materials Sciences $= \mathbf{E} \begin{bmatrix} \mathbf{eV} \end{bmatrix} \cdot \mathbf{I} \begin{bmatrix} \mathbf{A} \end{bmatrix} \cdot \mathbf{T}_{pulse} \begin{bmatrix} sec \end{bmatrix} \cdot \mathbf{f}_{rep} \begin{bmatrix} Hz \end{bmatrix}$ SNS : Goal is to achieve 1.4 - > 2 + + MW average power

- •The SNS will begin operation in 2006
- •At 1.4 MW it will be ~8x ISIS, the world's leading pulsed spallation source
- •The peak thermal neutron flux will be ~50-100x ILL

SNS Accelerator Systems Division

Instrument Layout

SNS Accelerator Systems Division

Oak Ridge

The Transformation of Chestnut Ridge into a construction site: More than 600 kH without major Lost workday !!

Progress on the Construction Site

EUTRON SOURCE

Front End Building to Linac

Linac Tunnel

March 13, '02 Light at the end of the tunnel and through the side penetrations

<u>March 13, '02</u> First inserts in installation before the Klystron Building is finished

High Level Baseline Parameters for the SNS

Proton beam energy on target	1.0	GeV
Proton beam current on target	1.4	mA
Power on target	1.4	MW
Pulse repetition rate	60	Hz
Beam macropulse duty factor	6.0	%
Ave. current in macro-pulse	26	mA
H ⁻ peak current front end	38	mA
Chopper beam-on duty factor	68	%
RFQ output energy	2.5	MeV
FE + Linac length	335	m
DTL output energy	87	MeV
CCL output energy	185	MeV

SC linac output energy	1.0	Ge
HEBT length	170	m
Accumulator ring circ.	248	m
Ring fill time	1.0	ms
Ring beam extraction gap	250	ns
RF systems	h=1 +h=2	
RTBT length	150	m
Protons per pulse on target	1.5x10 ¹⁴	
Proton pulse width on target	695	ns
Target material	Hg	

AP Issue: Minimize losses along the accelerator chain !!!!

 \rightarrow 1 Watt per meter (or 1 nA) apart from collimators

Primary Concern: Uncontrolled Beam Loss

- Hands-on maintenance: no more than 100 mrem/hour residual activation (4 h cool down, 30 cm from surface)
- 1 Watt/m uncontrolled beam loss for linac & ring
- Less than 10⁻⁶ fractional beam loss per tunnel meter at 1 GeV; 10⁻⁴ loss for ring

SNS Project Commissioning Schedule

 Installation, Testing and Commissioning will happen at the same time

Layout of Linac RF with NC and SRF Modules

SPALLATION NEUT

LBNL: The SNS Front End Systems

SNS Accelerator Systems Division

Oak Ridge

Front-End Systems Commissioned @ LBNL

lon source performance adequate for SNS early operations

- 50 mA average pulse current achieved
- Established lifetime exceeds 100 hrs
- Expected to be much longer with latest antenna design: thicker coated antenna
- Feasibility of fully electrostatic LEBT proven
 Good match of 40-mA beam into RFQ
- RFQ performs better than planned
 - More than 90% transmission at 40-mA current
- MEBT commissioning started on 4/4/2002
 - A maximum of 36 mA was achieved :

 $\mathcal{E}_{X,Y} \approx 0.3 \pi$ mm mrad

SNS Accelerator Systems Division

MEBT Collimation: Mitigate Halo when it develops!

- MEBT is the biggest contributor to halo formation \Rightarrow Collimate there!
 - Nonlinear space charge force due to large beam eccentricity (chopper box to anti-chopper box) is responsible for halo formation in MEBT
- Alternative MEBT optics and collimation at the chopper target box preempt halo formation, removing 97% of halo at CCL
- Beam loss potentially jeopardizes quadrupole performance if collimated in the DTL

Beam Loss Occurs Primarily at Structure Interfaces for Mismatched Beams

LANL: Design, Accelerator Physics and Linac Components

CCL Construction is Underway

- Contract awarded
- Hot model operated at 130% of peak field and 190% average power

LANL: The RF Systems

~ 100 Klystron stations @ SNS

SNS Accelerator Systems Division

stron Oil tanks in

production

JLab: The Superconducting Linac

- Emittance Growth and Halo Scraping
- SC cavities have large apertures and high field
 - Saves real estate, operational money, reduces beam loss (since most of it comes from gas stripping or aperture restrictions)

SNS Accelerator Systems Division

Varying β In Cavity Fixed Geometry

SNS Accelerator Systems Division

Prototype Cavity Performance

Performance of 6-cell, β=0.81 cavity, stiffening ring at 80 mm.

SNS Accelerator Systems Division

High Power Requirements: 25%-50% Power Reserve in high and medium β

Example: High β cavities

Development of the SC RF Cryomodules

- Prototype cryomodule (3 x β =0.61) in test cave
- Piezo tuners: Development underway and in the baseline
- Tuner test ongoing
- Response @ 4 K
- Need 15 μm

SPALLATION NE

Production Cryomodule subassemblies

- Complete refrigeration system components and start refrigeration installation (ORNL)
- Complete prototype cyromodule testing
- Cryomodule production
 - Full cavity production
 - Start production cryomodule assembly
- Install electropolish cabinet

Schedule is tight!

BNL: Accumulator Ring and Transfer Lines

Several commissioning beam dumps

1% of the Reference Beam Misses the Injection

Combined tune spread: various intensities

Tune Diagram during Accumulation

N=0.5*10¹⁴ - 263 turns N=1.0*10¹⁴ - 526 turns N=2.0*10¹⁴ - 1052 turns

Electron Cloud Coating, Clearing Electrodes, Studies

- <u>Electron-cloud:</u> a potential threat to fullintensity performance
- Floating-ground BPMs serve dual purpose as clearing electrodes
 - 42 BPM, each holding ~
 +/- 1 kV

SPALLATION

- No change of design
- Clearing electrodes near injection foil assembly
- TiN coating fully in progress

Electrons behind bunch

SNS Accelerator Systems Division

Ring Progress – Vacuum, Coating, Handling

(Half-cell chamber welding)

SNS Accelerator Systems Division

Ring Progress – Magnet, Assembly, Measurements

SNS Accelerator Systems Division

Controls Team: Scattered Effort over 5 Lab

- MPS, PPS, Timing... **Everything under EPICS**
- Support has been provided for Front End runs at Berkeley
- Global components are arriving. Timing and MPS components distributed among partner labs for testing and integration

- Linac Controls ready for DTL Installation
- Have been operating FES @ Berkeley from ORNL +data analysis→GAN

SPALLATION NEUTRO

10.00 %

The Installation and Production of Components

Building transferline

Installing transferline

- Design, construction, transport and installation
 - Transfer line installation
 - Chase insert installation on site
 - Buss bar production

chase installation

Diagnostics: Scattered Effort over 5 Labs

Survey and Alignment Group (6/7)

- Establish independent network on the site
- Verification of construction
- Establish Laser Tracker as prime tool to speed up installation and alignment
- Enable long-term survey

Legend

101

103

Standing Concrete Monument Tunnel Penetration Points

> between exterior points to penetration points through future target before buildings

Rod Monument

SNS Precision Network Diagram Drawing updated on Sept. 6, 2001 by ks

SNS Accelerator Systems Division

The SNS target: A 2 MW design

Cavitation is most recent issue !

Several routes out ...: Materials, Geometry, Mitigation

Summary

SNS SPALLATION NEUTRON SOURCE

•With delivery of the Front End Systems to ORNL installation on the site has begun.

•The first of the 5 partnerlabs is transitioning out of the collaboration after delivery (LBNL).

•The Project is on track for commissioning of the target in December '05.

•Major issues (at least the ones we know about) are addressed and solutions are identified

•My Assessment:

It is a very fruitful, intellectually and technically challenging and certainly very productive collaboration. Thanks to the contributors !!!!