Upgrade Opportunities at the Advanced Photon Source Made Possible by Top-Up Operations

L. Emery and M. Borland June 4th, 2002

Top-up Injection

- Inject a little beam at a time to maintain constant total current
- Default operation mode since Oct. 2001
- Schedule 75% of user time
- Report from users: very positive and anecdotal, i.e. No need to adjust x-ray optics during week of running.

SR Improvements

- Past improvements were easy, no physical trade-offs.
 - Reduced β_y from 10 m to 4.5 m
 - Increased brightness
 - Increased vertical acceptance for 5 mm ID VC
 - Reduced single bunch instability threshold
 - Low-emittance optics (3.9 nm-rad, effective)
 - Top-up

Next Improvements in Brightness

- Emittance and current
 - Want to keep same bunch pattern of low number of bunches
 - Will reduce lifetime

Present Running Parameters

Energy	7 GeV
Current	102 mA
Bunch pattern	23 bunches
Injection interval	2 min
Injector bunch	One bunch, 3.7 nC max.
Injector emittance	130 nm-rad (i.e.,large)
Injection efficiency into SR	80%-100%
SR optics	Low-emittance
SR effective emittance	3.9 nm-rad
Lifetime	7 h for 2% emittance ratio

Present Bunch Patterns in Top-up

Lifetime for Given Optics

 Values measured for different optics (lownand high-emittances) consistent with calculations

Bunch pattern

Rigidly set by management for now (for timing experiments)

• Vertical emittance

- Adjusted with using skew quadrupoles whole keeping x-y coupling low.
- Determined by length of filling cycle, e.g. 12-h
 or 24-h cycle, gives about 20 h

Lifetime for Given Optics

- Vertical emittance (cont'd)
 - Higher value: increases lifetime
 - Lower value: increase brghtness and decrease injection losses
 - Beamlines can't use potential decrease in vertical beam size ⇒Very low value not needed.
- Bunch length
 - Bunch charge dependence
 - Optimize lifetime slightly with rf voltage to match momentum aperture.

Operating Lifetime Limit

• Non-top-up:

– Determined by length of filling cycle, e.g. 12-h or 24-h cycle, requires at least about τ of 20 h.

• Top-up:

 Determined by injection interval, charge per injection cycle, e.g. 5 h for APS

$$\tau_{limit} = 6.25 \Delta T [min] / \eta_{inj} Q_{max} [nC]$$

Fundamental Trade-offs

- Injection loss and radiation damage
 - High emittance ratio (for lifetime) means higher losses
 - If we operate with minimum ε_y , or close to it \Rightarrow Increase injector charge, decrease injector interval or increase number of bunches
 - Idea to eliminate trade-off: Adjust lifetime with vertical planar wiggler to increase while keeping xy coupling small with skew quadrupoles.

Fundamental Trade-offs

High bunch density means low lifetime

$$- \tau \sim \sigma_x \sigma_y \sigma_z / Q$$

- Further reduction in lifetime:
 - Non-top-up mode, must be countered with increase in number of bunches
 - Top-up mode, increase injector charge, decrease injector interval, increase number of bunches, e.g.,

$$Q_{inj}[nC] = 6.25 \Delta T[min]/\eta_{inj}\tau[h]$$

SR Improvement Enabled by Top-up

- Reduction in ε_{x}
- Higher total current
- Higher bunch current

Lower Emittance I

• Simply rematch for minimum effective ε_x with present power supplies and magnets as constraints

$$\epsilon_{x,eff} = \sigma_x \sigma_{x'} = \sqrt{\epsilon_x \beta_x + (\eta_x \sigma_E)^2} \sqrt{\epsilon_x / \beta_x}$$

• Program elegant optimizes effective ε_x directly

Model emittance	2.5 nm-rad
Measured emittance	2.5 nm-rad
Model effective emittance	3.0 nm-rad
(nux, nuy)	(36.2, 19.27)

Lower Emittance I

Lower Emittance II

• Add gradient to dipole with pole face windings. No other magnets or power supply require change.

Model emittance	1.2 nm-rad
Model effective emittance	1.8 nm-rad
(nux, nuy)	(46.2, 32.27)

• Lifetime for 23 bunches and 2% emittance ratio will be about 2.5 h.

Lower Emittance II

Higher Beam Current

- SR photon absorber limited at 300 mA
- ID front end handles 130 mA for undulator A at 10.5 mm gap.
- Run once with gaps open and many bunches at 200 mA with no serious problems.
- Need limit on peak current for the ceramic chambers of injection kicker magnets ⇒ change bunch patterm
- Delivered beam for users during machine studies: 130 mA, 23 bunches, 5 h lifetime,
 - Limited by injector charge

Increased Bunch Current

- Single bunch instability threshold is about 8 mA. Use 5 mA in special bunch pattern.
- In special bunch pattern, 5 mA is all that is available for timing experiments.
- Get higher bunch charge by getting stronger sextupoles, feedback system, or accepting a higher emittance.
- Lifetime differs from rest of bunches.
- Top-up maintain bunch pattern by injecting more times in single bunch ⇒ Much lower lifetime for one bunch is acceptable