

ELYSE – An Intense Electron Linac for Pulsed Radiolysis Research

T. Garvey, M. Bernard, H. Borie, J.C. Bourdon, B. Jacquemard,B. Leblond, P. Lepercq, M. Omeich, M. Roch, J. Rodier, R. Roux Laboratoire de l'Accélérateur Linéaire, Orsay.

> F. Gobert, H. Monard, Laboratoire de Chimie-Physique, Orsay.

Conseil Régional d'Ile de France

Essonne

The ELYSE project

LASER - femtosecond — ACCELERATOR - picosecond

Accelerator Specifications

4-9 MeV

- Energy
- _ Bunch charge
- _ pulse duration
- _ Energy spread
- ____ Normalised emittance
- ____Beam size on target
- _ Repetition frequency

- $\geq 1 \text{ nC }^*$ $\leq 5 \text{ ps (FWHM) } I_{\text{peak}} \sim 200 \text{ A} - 2 \text{ kA}$ $\leq 2.5\% \text{ (RMS)}$ $\leq 60 \text{ mm-mrad (RMS)}$ 2 - 20 mm diameter
- 10 100 Hz
- 10 nC would be desirable!

Longitudinal Bunch Compression (H. Monard)

- _ Accelerate bunch off-crest of RF wave
 - _ generate correlated phase-energy spread
 - _ energy dependant path lengths in dipoles allow tail to catch up with head
 - $_$ longitudinal compression $\Delta l = R_{56} \delta E/E$

M. Uesaka et. al., Nucl. Inst and Meth. A 406, pp 371-379 (1988)

Simulations show : bunch compression can compensate for lengthening due to space charge effects.

Tests foreseen using streak photography of Cerenkov radiation from the beam

Simulations – pulse duration

Choice of Photocathode

Want – (i) long life-time (~ 50 hours) (ii) high quantum efficiency

 $Q \sim E_L$. η

For $E_L \sim 10~\mu J$ and Q = 10~nC need $~\geq 1\%$

- _ need Cs₂Te photo-cathode
 - high vacuum requirements
 - _____ relatively easy fabrication
- _ Photo-cathode preparation chamber (cf. CTF, TTF)

(c.f. Brookhaven project – LEAF; large E_L and metallic cathode)

Image of laser beam on an optically *Equivalent Plane* to that of the photocathode plane.

View of the ELYSE Accelerator

First photo-electron beam from the ELYSE Accelerator

Image of beam on screen at Experimental Area 1

Dispersed beam width at the analysing slit (slit width = 10 mm)

 $\Delta E/E$ @ half height = 12%

 $\Delta x \sim [\rho(1 - \cos\theta) + 2 L \tan(\theta/2)] \Delta E/E \sim 62 \text{ mm}$

Cathode surface showing signs of damage

Conclusions

- _ ELYSE has produced its first photo-electron beam _ (albeit with a copper cathode).
- _ First tests with a Cs_2Te cathode will be performed soon.
- _ Excessive dark current levels need further studies.
- _ Considerable work remains to be done for machine optimisation
 - relative phases between laser and rf
 - optics settings.

Note: Such guns exist today for the physical chemistry community thanks to investment in R&D programs for HEP (linear colliders), e.g. CTF.

Acknowledgements

LURE Personnel

M. Corlier and J. Vétéran –	magnet tests and measurements
M. Begard and P. Corona –	magnet power supplies
J.C. Frank and M. Geeraert –	radiation safety
P. Robert –	cooling system

LAL technical support

G. Arnaud, F. Blot, J.N. Cayla, V. Chaumat, F. Cordillot, J. Lamouroux.

Thanks to – R. Bossart, J.C. Godot, K. Hubner, G. Suberluqc (CERN)