TESLA Test Facility

The Diagnostic System of TTF II

Dirk Nölle for the TESLA Collaboration D-22603 Hamburg, Germany

EPAC 2002, Paris, June 2002

TTF II at DESY:

- Superconducting 1 GeV LINAC
- Charge between 0.1 and 4 nC
- Normalized Emittance $\approx 2 \pi$ mm mrad
- Bunchlengths as short as $\approx 50 \ \mu m$
- Up to 7200 Bunches with 110 ns Spacing
- 10 Hz Operation
- VUV Soft X-Ray FEL User Facility (down to $\approx 6 \text{ nm}$)

Challenges of the Diagnostics

- LINACs are Open Loop Systems
 - Beam Parameters change during the Pass through the Machine;
 They have to be measured at different Locations from Gun to Dump.
 - Diagnostics have to have Single Bunch Resolution over the whole Bunch Train.
 - Pulse to Pulse AND Bunch to Bunch Fluctuations have to be detected.
- High Duty Cycle Single Pass Machines can destroy themselves
 - Radiation Damage, Heat Load
 - Need a very sensitive fast acting Protection System.
 - Threshold and Reaction Time is determined by the most sensitive Component (≈ 3 µs).
- Challenge of Ultra short compressed Electron Bunches
 - How to measure bunch lengths in the 100 fs Regime?
- SASE Characteristics (Intensity, Pulse Length)
 - Strong Dependencies between Laser and Machine Operation
 - Operator needs FEL Parameters and their Statistics.

LINAC - Storage Rings

LINAC

- Pulsed System with high Fluctuations
- Triggered Electronics have to take Pulses with the rep. Rate of the Bunches.

(9 MHz for TTF II)

Storage Rings

- Closed loop Equilibrium System
- Watch beam Parameters under stable Conditions.
- Systems can be much slower and can average over long Times.
- Precise Measurements in the Frequency Domain.

... further Complication

FEL process?

at TTF I

Areas of Special Interest for Diagnostics

Remark: TTF has everything, a big Machine also has, but everything concentrates in a limited Area !

• Charge

T1

T2,

T3

T4,T5

Need to Measure
 Charge
 Charge Distribution of the

T8

Т9

T6, T7

- Bunches in the Beam Pulse
- Transmission

Fast Toroid System

- Single Bunch Resolution
- Time Constant < 110 ns</p>
- Bunch Rep. Rate = 9.9 MHz
- Range 0.1 to 5 nC
- Accuracy $\approx 10^{-3}$

- Charge
- Beam Position

Warm Parts of TTF II:

Striplines, Pickups

- Use a modular electronics system for all BPMs based on AM/PM Signal Processing
 - Single Shot, Single Bunch Readout
 - Variation of the Beam Position over the Macro Pulse
 - External Trigger
- Striplines installed inside the Quads, and aligned to the magnetic Axis (Res. < 30 μm, 34 mm Pipe)
- Button Arrays (8 Pickups per Monitor) for Bunch Compressors (large variation of Beam Position)
- Pickups in the Diagnostic Blocks between Undulator Sections and 2 inside each Undulator (Res. ≈10 µm)

In the cold Modules:

- Cavity BPMs
- Prototype of a Cold Reentrant Cavity (by CEA)

- Charge
- Beam Position
- Transverse Electron Distribution

Screen & Wire Scanner

- Screens* (OTR, Diff. Radiation, Ceramics)
 - Beam Size (typical O(100µm)),
 - Measure Emittance, Energy Distribution
 - Resolution $\approx 20 \ \mu m$
 - Interceptive
 - Damage Threshold: 3 10 bunches only
- Extraction of Coherent FIR Radiation
 - Measurement of Compression
 - Measurement of Bunchlength
- Wire Scanners
 - Modified CERN Scanners with a "V Fork" and 45° Assembly with Respect to the Beam
 - New developed Type using an unidirectional Drive Unit (used in the Undulator)

OTR Station for TTF II

*In collaboration with INFN, Frascati, Italy

- Charge
- Beam Position
- Transverse Electron Distribution
- Dark Current

Dark Current at TTF I:

Sum Signal of Reentrant Cavity BPM sampled between Laser Buckets

Dark Current

- Fills every RF-bucket
- Produces losses along the machine
- Contributes to Cryo-Load
- is emitted by the Gun
 - Increases with the age of the cathode
 - Cathode has to be changed
 - if DC gets to big compared to normal current, or
 - if DC produces to much losses
 - Measured by Sum Signal of a Reentrant Cavity BPM (O(500 nA))
- and by the Modules
 - At very high Gradients
 - Needed for Module Development
 - Sensitive Cavity Monitor (10 nA, installed outside the vacuum)

- Charge
- Beam Position
- Transverse Electron Distribution
- Dark Current
- Phase

Phase

- Isolated impedance-matched Ring Electrode installed in a "thick Flange"
- Broadband, Position independent Signal
- One installed after the Gun, each magnetic Chicane (BCs and Collimator)
- Due to magnetic Bunch Compression Energy Fluctuations turn into Phase Fluctuations
- Beam Signal mixed with the (1.3 GHz) Master provides a Signal proportional to the Beam Phase
- Time Of Flight Measurement: Resolution < 0.5° or 1 ps (tested with TTF I Stripline as a Pickup)

- Charge
- Beam Position
- Transverse Electron Distribution
- Dark Current
- Phase

... this is not sufficient for a SASE Machine!

Bunchlength and Compression

Scale: Resolve Structures of 100 fs and less

- Qualitative: Optimization of the Compression
 - Phase Tuning to maximize the coherent FIR Emission from the Beam.
 - Emission $\approx n^2$ for $\sigma_s \leq \lambda$
 - Use of simple Pyro-Detectors in the FIR
- Quantitative: Measurement of Bunch Length
 - Use coherent FIR Radiation and Autocorrelation Methods.
 - Transverse Mode Cavity (integrated Streak Camera)
 - Electro-Optical-Sampling

Interferometric Bunch Length Measurements

Using Coherent Transition and Diffraction Radiation

In Collaboration with University of Aachen, Germany

Transverse Mode Cavity: "Intra Beam-Streak Kamera"

Poster on Transverse Mode Cavities: Today THPRI097 By P. Emma, R. Akre, L. Bentson, P. Krejcik

In collaboration with SLAC, USA

Electro-Optical-Sampling

- Coherent Terrahertz (Transition or Diffraction) Radiation is combined with an ultra short Ti:Sa Laser (15 fs) in a ZnTe Crystal.
- The Polarization of the Ti:Sa Laser is changed depending on the Amplitude of the "Beam Fields".
- The Bunch Length can be scanned by varying the Delay of the Ti:Sa Laser
- Resolution limits: Laser Pulse Length and Timing Jitter of Laser and LINAC
- Single shot Measurement using a Chirped Laser are under Investigation

In collaboration with TU Darmstadt and TU Aachen, Germany

Protection Systems

• SASE LINAC:

- "Biggest Welding Machine"
- "Biggest X-Ray Tube"

Therefore:

- Need of fast Interlocks to avoid Mechanical Damage.
- Need of continuous Monitoring to minimize Radiation Damage.
- Transmission <u>and</u> Loss based Systems
 - Thresholds given by most sensitive Component (Undulator)
 - Reaction Time by ,,Worst Case Events"
 - Fast and Slow Systems

Slow Loss Monitoring Systems

- TLDs
 - TLD crystals located at sensitive regions (undulator section)
 - Document the Irradiation Profile over long Times
 - Data on a weekly Basis
- Optical Fibers used as Dosimeters*
 - Small Opt Fiber Coils installed close to the Undulator Gap
 - Transmission Decrease of the Fiber due to Radiation Damage
 - Allows
 - Avoid Operation Modes with medium high losses
 - Correlation of Dose Measurement with operation Modes
 - Reaction Time $\approx 1h$

*In collaboration with Fraunhofer INT, Euskirchen, Germany

- Modular System made of fast Beam Interlock Concentrators (BIC) and Interlock Inputs with well specified interfaces.
- BIC Modules can be cascaded, Input Mask and Event Status controlled by BIS
- Interlock Inputs: Different Systems using Same Communication Protocol: Protection Systems, RF, Fast Acting Valves,

testatet -----

Transmission Based Protection System for TTF II

Pairs of Current Monitors + fast acting Interlock Electronics Two Measurement:

- Fast, detecting high losses $O(10\%) \implies Cut \underline{this} Beam Pulse$
- Slow, averaging over the bunch train $(O(10^{-3})) \Rightarrow$ Inhibit <u>next</u> Long Pulse

Inhibit Pairs for TTF II: • $T_1 - T_9$: Whole Machine (FEL Mode) • $T_1 - T_{11}$: Whole Machine (Bypass Mode) • $T_2 - T_6$: 2nd System for both Modes

•Used for Beam Inhibit

•Charge Measurement only

In collaboration with CEA, Saclay, France

Loss Monitor Systems

- ≈ 50 Fast Loss Monitors (Photomultipliers) at critical Machine Parts
- Used as fast input Channels for the Fast Beam Inhibit system

PM Operation Panel of TTF I

Poster Today!: THPRI119 by H. Schlarb et al.

SASE Diagnostics

- Tolerances on Machine Settings are very tight!
- \Rightarrow Light Production has to be controlled from the Operators Console.
- Operator needs to keep optimum Performance:
 - SASE Signal + Statistics
 - Radiation Spectrum (Pulse Length)

(few modes only \Rightarrow high peak power, Operation Experience of TTF I)

MCP has been calibrated for different voltage settings dynamic range: 10⁷

Conclusion

I am sure time is over

• • • • • • • • • • •