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Abstract

Coupling impedances are most often calculated for beam
enclosures of circular cross-section, and resulting formulae
are used to interpret beam measurements, sometimes even
in the case of flat chambers. This leads to misunderstand-
ing and inaccurate evaluations. Rigourous analytic formu-
lae exist for smooth, resistive chambers of elliptical or rect-
angular cross-section, while computer programs allow one
to evaluate more complicated, non circular-symmetric ge-
ometries. At low frequencies the impedance of thin resis-
tive walls departs from classical formulae.

1 INTRODUCTION

The science of collective effects in high-energy acceler-
ators is now mature and newcomers in this field are offered
books, courses and handy formulae to facilitate their work.
However, general formulae may not apply to all particular
situations: one has to understand the simplifications made.

In this report we present a few cases where an additional
effort may be necessary to form a correct view of the prob-
lem. They are concerned with space charge, flat vacuum
chambers and thin resistive walls.

2 TRANSVERSE IMPEDANCE AND
TUNE SHIFT

The transverse coupling impedance is generally defined
as [1]

ZT =
−i

∫ 2πR

0
[E + vB]ds

βI∆
. (1)

This is the integral over the machine circumference of
the Lorentz force on a unit charge per unit beam current I
and unit displacement ∆, with β = v/c.

The betatron motion x = x0e
−iQω0t of a single parti-

cle in a coasting beam is modified by Z T . The perturbed
motion is given by

ẍ + Q2ω2
0x = i

eβ

mγ

ZT I

2πR
〈x〉 (2)

where 〈x〉 is the average, coherent motion, β and γ the rel-
ativistic factors, R the machine radius, Q the tune and ω0

the revolution frequency.
By averaging over particles on the l.h.s., we obtain the

collective(coherent) tune shift

∆Q = −i
Nrp

2πγ

βT ZT

Z0R
(3)

Figure 1: Single bunch tune shift measurements in the
CERN SPS [2].

where βT ∼ R/Q is the betatron function, Z0 the
impedance of free space, rp the classical particle radius,
and N the number of particles in the machine.

The impedance ZT is evaluated at the frequency of the
collective mode considered.

The real part of the impedance produces a growth rate
and the imaginary part produces a frequency shift. In
bunched beams, one has to use an effective impedance, av-
eraged over the spectrum of the bunch head–tail modes.

The measurement of growth rates and frequency shifts of
collective modes is the most straightforward way of mea-
suring coupling impedances. In the CERN SPS, where
a sustained effort is being made to reduce the coupling
impedance in view of producing dense beams for the LHC,
such measurements are made regularly [2]. An example
is shown Fig. 1: the remarkable fact is that the tune shift
in the horizontal plane is equal to zero to a high precision.
This, as we will see, is explained by the fact that the ma-
jority of the vacuum chambers of the SPS are rather flat.
The growth rates in the horizontal plane are half those in
the vertical plane: this again is a consequence of the cham-
bers’ being flat.
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These observations cannot be explained simply by in-
voking Eq. (3): this equation is valid only for round cham-
bers, and even in this case does not apply to all situations.
In fact what has been forgotten in Eq. (2) is that single par-
ticles may suffer a tune shift due to collective effects even
when the beam as a whole is at rest: this is called the inco-
herent tune shift.

Let us follow the approach of Mohl [3]. The force lead-
ing to the incoherent tune shift ∆Qic is proportional to the
deviation of the particle from the beam centre

Fic ∼ ∆Qic(x − 〈x〉) ,

whereas the force leading to the coherent tune shift ∆Q c

is proportional to the deviation of the beam centre from the
centre of the vacuum chamber

Fc ∼ ∆Qc〈x〉 .

The betatron equation for the particle is thus

ẍ+Q2ω2
0x+2Qω2

0[∆Qc〈x〉+∆Qic(x−〈x〉)] = 0 . (4)

The coupling impedance is by definition proportional to
the wake force due to the displacement 〈x〉 of the beam
centre, and thus

ZT ∼ ∆Qc − ∆Qic .

From which we conclude that

∆Qc = effect of ZT + ∆Qic . (5)

We will illustrate this by considering the case of the
space charge interaction.

3 SPACE CHARGE

We first consider a coasting beam in free space (Fig. 2a).
The space charge force acting on a single particle results
from a radial electric field Er and an azimuthal magnetic
field Bθ . The force is proportional to the particle ampli-
tude and produces, for a beam of circular cross-section and
uniform density, a tune shift

∆Qic = −Nrp

2πγ

βT

β2γ2

1
a2

. (6)

Here a is the beam radius. The factor 1/γ 2 comes from
the partial cancellation of the effects of Er and Bθ.

There is obviously no coherent space charge tune shift
in free space, since there is nothing to which to refer the
movement of the beam.

Now we consider the same beam at the centre of a
perfectly conducting vacuum chamber of circular cross-
section. The field lines have the same aspect as before,
they are just truncated at the wall (Fig. 2b). The incoherent
tune shift is the same as in free space. However, if now we
displace the beam, the field lines distort as in Fig. 2c. There

Figure 2: Field patterns for a beam in free space a) centered
in a circular chamber b) and displaced c) [5].

results a coherent tune shift, which was calculated long ago
by Laslett [4]

∆Qc = −Nrp

2πγ

βT

β2γ2

1
b2

(7)

where b is the radius of the vacuum chamber.
In order to calculate the space charge coupling

impedance, we follow Chao [5], who solves Maxwell’s
equations with proper boundary conditions in the case of
Fig. 2c. The source of the fields is a thin ring of charges
at radius a, with a cos(θ) distribution. The resulting trans-
verse impedance is

ZT = i
Z0R

β2γ2

[
1
a2

− 1
b2

]

. (8)

Since the beam radius a is in general much smaller than
the chamber radius b, the dominant term in (8) is the first
one. Let b increase to infinity, and use formula (3) to calcu-
late the tune shift induced by the space charge impedance
in free space: we find the same value (but with opposite
sign) as that of the incoherent tune shift (6), which is obvi-
ously wrong, since we know that there is no coherent tune
shift due to space charge in free space. Using (5) instead
gives the correct result, the same as shown in (7).

This can be explained in the following way. The dis-
placed, circular uniform beam is properly represented by
the superposition of the centred beam and the two lunules
of Fig. 1c. The lunules generate the dipole moment and the
coherent fields. However, they oscillate in the static field
of the quiescent part of the beam: their tune is depleted
by ∆Qic. This is just cancelled by the 1/a2 part of the
impedance.

Up to now we have considered cylindrical vacuum cham-
bers of circular cross-section. In fact, accelerators using
classical, warm magnets usually have flat chambers. Back
in 1963 Laslett [4] calculated the space charge effects in
chambers of various shapes. He introduced the famous
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Figure 3: Rough sketch of Laslett’s coefficients for an ellip-
tical chamber of horizontal/vertical semi axes w/h [4, 6].

Laslett coefficients: ε1 to describe the incoherent tune shift,
and ξ for the coherent one. Figure 3 shows how these co-
efficients vary from a round chamber to a flat one made of
two parallel plates. The coefficient ξx for the horizontal
coherent effect was calculated later on by Zotter [6].

For chambers of general cross-section the coherent tune
shift is obtained by multiplying Eq. (7) by 2ξ, while the in-
coherent one is given by Eq. (6) to which must be added
a second term obtained by replacing 1/a2 by 2ε1/h2 (h is
the half-chamber height). Thus the flat chamber contributes
not only to the coherent tune shift, but also to the incoher-
ent one: the wall images of the centred beam produce a
static quadrupolar field superimposed onto the free-space
field of the beam. Whereas the direct space charge effect
is of the same sign in both x and y directions, the image
effect has opposite signs in x and y. Notice how the hori-
zontal coherent tune shift vanishes as soon as the chamber
becomes flat: it is obvious that for two parallel horizontal
plates, there cannot be any horizontal coherent tune shift.

4 THE GENERALIZED IMPEDANCE

The fact that the coherent space-charge tune shift in
the horizontal plane of a flat chamber is zero is reminis-
cent of the SPS results. However, in the SPS the mea-
surements are made with high-energy beams which are
sensitive to the resistive-wall impedance (for multi-bunch
beams) or high frequency impedances due to cavities and
cross-section variations (for dense single bunches) and not
to space charge.

In order to better understand in a general case the rela-
tion between the classical concept of coupling impedance
and the beam measurements, let us consider separately a
‘source’ particle which generates the wake-fields, and a
‘witness’ particle which comes behind (since we consider
ultra-relativistic beams, there are no fields ahead of the
source particle). When the source particle travels on the
axis of a cylindrical chamber of circular cross-section, the
fields are as shown in Fig. 2a: there is no transverse force,
since the effect of the electric field perfectly cancels that of

the magnetic field. Displacing the source particle generates
a wake-field W which, provided the displacement is small
enough, is predominantly dipolar. The witness particle is
deflected by an amount which does not depend on its own
transverse position, but is proportional to the excursion of
the source particle: ∂Wy/∂ys in the vertical plane, and
∂Wx/∂xs in the horizontal plane correspond to the ‘clas-
sical’ coupling impedances.

In a flat vacuum chamber, the symmetry displayed in
Fig. 2a is broken: the E and B fields no longer compensate
each other. As a result, a source particle travelling on-axis
generates a wake-field which is quadrupolar to first order.
The witness particle is now deflected in proportion to its
own excursion: ∂Wy/∂yw and ∂Wx/∂xw are the relevant
quantities. These quadrupolar forces must be added to the
dipolar forces arising from the displacement of the source
particle.

This is beautifully demonstrated in Ref. [7]. Figure 4
reproduces results of computer calculations concerning the
wake-fields of the LEP shielded bellows. The LEP vacuum
chamber was elliptical with an aspect ratio w/h of about
2. The shielding of the bellows approximately prolongs the
chamber walls.

Figure 4a shows the wake-field pattern for a centred
‘source’: it looks like that of a pure quadrupole. Figures 4b
and 4c show the total wake-field seen by the ‘witness’ par-
ticle when the ‘source’ is displaced in the y or x direc-
tions, respectively. Figures 4d and 4e show that when the
quadrupolar field (of Fig. 4a) is subtracted, a pure dipolar
field (about half as large in the x direction as in the y direc-
tion) remains. We see that the quadrupolar and the dipo-
lar field vectors add in the vertical plane, while they sub-
tract in the horizontal plane: hence the coherent tune shift
should be zero or small in the horizontal plane. However,
the growth rates of instabilities depend only on the dipolar
wake, and therefore we expect the horizontal growth rate to
be about half that of the vertical one.

The above results help us to understand the SPS mea-
surements. However, in the SPS the transverse coupling
impedance is supposed to arise mainly from unshielded
bellows and similar cavity-like objects. The unshielded
bellows constitute cylindrical cavities with a diameter of
15 cm and a length of 10 cm. They have exit ports matched
to the flat vacuum chambers which have an aspect ratio
ranging from 2.5 to 4. One may conjecture that the largest
deflecting fields are located at the exit ports, and therefore
display the same behaviour as the LEP bellows.

5 THE RESISTIVE WALL IMPEDANCE

The generalized impedances of resistive walls of ellip-
tical or rectangular cross-section have been calculated an-
alytically [8]–[10]. Here we reproduce on Fig. 5 the re-
sults of Yokoya [9]. One recognizes the behaviour of the
Laslett coefficients. For a chamber with an aspect ratio
of 2.5 or more (as in the SPS), the horizontal tune shift
(∂Wx/∂xs +∂Wx/∂xw) is very small and the ratio of ver-
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Figure 4: Effective transverse wake potentials of 10 mm bunches in LEP bellows for a centered beam a), and with x and
y offsetts b) and c). d) and e) are the same as b) and c), buth with the quadrupolar field a) subtracted [7].

tical to horizontal impedance is close to 2. Using the verti-
cal tune shift (∂Wy/∂ys + ∂Wy/∂yw) to estimate the ver-
tical impedance with Eq. (3) would lead to an overestimate
of 50%.

6 THE THIN RESISTIVE WALL AT LOW
FREQUENCY

For high enough frequencies or thick enough walls the
transverse impedance is [11]:

ZT =
Z0R

b3

2ρ

µωδ
(1 − i sign(ω)) (9)

where δ =
√

2ρ
µω is the skin depth, and ρ the metal conduc-

tivity.
Equation (9) describes the impedance when the thick-

ness t of the wall is much larger than δ: the impedance
then increases towards low frequency as 1/

√
ω.

When t is comparable to or smaller than δ we must re-
place δ in Eq. (9) by t, since the currents now flow in a
metal layer of thickness t instead of δ before. In this regime
the real part of the impedance increases towards low fre-
quency as 1/ω (this is not valid for the imaginary part,
which stays constant). For this reason the mode of lowest
frequency (n − q)ω0 with the tune q just below an integer
is strongly excited in large machines.

However, at very low frequency, when t � δ, beam-
induced currents partly flow outside the wall: they find
there a return path with a smaller impedance than the thin
wall itself [12].

This is modelled with an inductance L1 in parallel to the
wall resistance R1, giving

ZT =
Z0R

b3

2ρ

µt

ω − iωc

ω2 + ω2
c

(10)

where ωc = R1/L1 is a resonant frequency.
Figure 6 from Ref. [13] shows how the real part of Z T

increases like 1/ω until ωc, where it reaches a maximum,
then decreases like ω for ω < ωc. The imaginary part is
constant at low frequency.

In the LHC the beam screen is coated with a thin copper
layer, for which ωc/2π is about 100 Hz, and therefore this
is of no relevance since the lowest-order mode frequency
cannot be smaller than 3 kHz. However, for the Very Large
Hadron Collider (VLHC) which is being considered, this
mode can have a frequency as low as a few hundred hertz,
and using Eq. (10) makes a difference.

There are other occurrences when such a treatment is in
order: this concerns the kickers, which often have a ce-
ramic chamber coated on the inside with a very thin metal-
lic layer. Even at relatively high frequencies, beam-induced
currents find complicated return paths outside the metallic
layer. Computer programs exist to calculate the impedance

Proceedings of EPAC 2002, Paris, France

92



Figure 5: Wake functions for resistive elliptic pipes [9].
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Figure 6: Decimal logarithm of real (full line) and imag-
inary (dashed line) parts of the transverse impedance in
Ω/m of the LHC on a logarithmic frequency scale from
1 to 1010 HZ [13].

of multi-layered structures [13], while more complicated
cases are measured on the bench [14].

The dip shown in Fig. 6 is due to the space-charge
impedance [see Eq. (8)] which dominates at high frequency
and changes the sign of the imaginary part (here the ab-
solute value is shown). This feature can be misleading: it
will not show up in a tune-shift calculation or measurement
since the addition of the incoherent tune shift [see Eq. (5)]
cancels it out.

7 CONCLUSIONS

The Laslett coefficients or the resistive-wall general-
ized impedance calculations can be used to evaluate the
impedance of flat chambers. One can conjecture that they
also approximately describe the case of cavity-like objects
with flat entry ports.

The calculation of the impedances of thin and multilay-
ered chambers are important for very large accelerators and
for kickers with coated ceramic vacuum chambers.
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