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Abstract vergence under refinement of the action mesh and expan-
sion of the azimuthal mode set. We approached this prob-
lem from the viewpoint of functional analysis, after notic-
ing that the Oide—Yokoya integral equation is an integral
Squation of the third kind, which does not admit direct ap-
uton of the equation in this form is not well justied. A Progmauen Y @ fnte-dimensiona) pralem. The usual

simple change of th_e unknown f‘%”"“O” gives an e_quat'oﬂite dimensional approximation, a property that stems from
that can more readily be approximated by a matrix equa;

. ; ompactness of the Fredholm integral operator [7].
tion. In contrast to the usual approach (Oide—Yokoya ) the One approach to approximation of a third—kind problem
equation for eigen—frequencies does not have a continuully

. : . . . istotransform it to a second—kind Fredholm problem. Such
of solutions corresponding to single—particle frequenmesa transformation was made by Bart and one of the authors
but only a few solutions corresponding to coherent mode

S[8]. Recently we noticed a simpler approach, which is to
transform the equation so that the new integral operator is
1 INTRODUCTION compact, but not of standard Fredholm form. A compact
_ ) _ _operator on a Banach space is one that takes any bounded
The linearized Vlasov equation has long been considset jnto a relatively compact set. Roughly speaking, this
ered the basic tool for determining the current threshold foi‘mplies that it has a smoothing action on a set of functions
microwave instabilities. Here we treat longitudinal motionyn 5t are merely bounded, hence potentially noisy. We can-
only. Amode decomposition leads to an equivalentintegrg{st give mathematical details here, but it is easy to see the
equation, which can be completely analyzed in the case Qhue of our transformation in pedestrian terms: the dis-
a coasting beam. For the bunched beam the modes are &biized Oide—Yokoya operator has matrix elements that
coupled, and there are still aspects of the problem that agg:ome unbounded as the mesh is refined, whereas all ma-

not very clear. Differentforms of the integral equation havrix elements from our transformed operator are bounded
been discussed, for instance by Sacherer [1], Wang and Pghder mesh refinement.

legrini [2], and Oide and Yokoya [3].

The authors of Ref. [3] made an important advance when 2  OIDE-YOKOYA INTEGRAL
they linearized the Vlasov equation about the proper equi- EOUATION
librium distribution determined by HsSinski’'s equation. Q
They then transformed to action—angle coordinates of the The Viasov equation for longitudinal motion in a linear
corresponding distorted potential well, and took FourieRF bucket is
transforms in time and angle. The resulting integral equa- of of of
tion is replaced by a finite—dimensional matrix equation, — 4 p= — (q + F(q, f)) g (1)
by discretizing integrals on an action mesh, and truncat- 90 9q Ip
ing the azimuthal mode set. Th|s s.c.h.eme has been usedfig governs the distributiorfi(q, p, #) depending on the
find the current thresholds of instabilities by several authorgy malized time and phase space variables
[4, 5, 6]. Some success in agreement of thresholds with

The linearized Vlasov equation for longitudinal motion
of abunched beam leads to a singular integral equation, t
singularity being associated with the tune spectrum of th
single—particle motion. A discretization for numerical so-

tracking studies has been reported, but some difficulties, _ . _Z _ _F-FE w0, aogp
have been noticed as well [4]. Convergence of the finite— st d 0.’ p og ¢ Ey ’
dimensional approximation is in doubt, and the presence of (2)

incoherent mode frequencies, often degenerate with cohg¥herews is the synchrotron frequency, is the distance
ent modes, confuses the physical interpretation of eigedom the synchronous particle (positive in fron), and
vectors. og are rms spreads of a low—current bunch, anig the
Our intention here is to improve the calculational stratMomentum compaction. The collective force is expressed
egy by reformulating the Oide—Yokoya equation so as t§! terms of the wake functioli” (positive f02r energy gain)
eliminate the continuous spectrum and also guarantee cozﬂr—‘d a normalized current paramefer= e“N/(2mv o)
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The bunch population iV and v, is the synchrotron K(m,J,m',J') =

tune. When Fokker—Planck (FP) terms to account for syn- £0T)

chrotron radiation are added to the right side of (1), we get — /dqb sin m¢/d¢’ cosm'¢’

an equation which has a unique equilibrium solution (un- .,

der restrictions on the current and properties of the wake), @1(#,/)W(Q(¢,J) —Q(¢', J')) . (12)

which is also an equilibrium of the Vlasov equation. Werqy contact with Fourier analysis we have put —iw and
linearize (1) about that equilibrium, but do not include thenave writtenf, (-, ) for the previousf: (-, s). The Laplace
FP terms in the following analysis. The equilibrium hasyansform is assumed to exist fe s > wvo, hence for
the form fo(q, p) = exp(—p*/2)po(a)/v2m wherepo(a)  Im w > vy. Eq.(11) is equivalent to the equation of Oide—
is the solution of the HaSinski equation. The Hamiltonian ypkoya , whenim w = 0. Unstable modes correspond to
of the equilibrium motion, a functional ofy, is poles of f; atw = u + v, v > 0.

1 If wis real and in the range oi<2(.J), the equation is an
Hy =3 (p* + &%) + He(g, fo), (4)  integral equation of the third kind [8], owing to a zero of the
factorw — m&(J). Such an equation may have solutions
whereH. is the collective part of the Hamiltonian, in a space of generalized functions, with delta—function
o and/or principal—value integral functionals concentrated at
H.(q,f) = _/ F(q, f)dq . (5) the zero. The delta — PV functionals correspond to the van
q Kampen modes [9]. In general the equation has no con-

tinuous solution. Thus, if we try a simple discretization
of the J—integration to create a matrix equation, we shall
be trying to represent a delta function numerically, which
is hardly a worthy ambition. One could takepositive to

Following [3], we perform a canonical transformation to
exact angle—action variablég, J) of the equilibrium mo-
tion. The transformation is written as= Q(¢,J) , p =
P(¢,J). Defining the perturbatiorf;, we linearize (1)

: get a regular integral equation, but at the smalkeded to

about/, as follows: determine thresholds it would still have doubtful value for

F(#,J,0) = fo(J) + f1(0, J.6) , (6) numerical work because “near zerosof- mS(.J) would

Py 9f OH. still be felt.

Dot - on2Lel) o @)

Q(J) = H(J) ®) 3 REGULARIZED EQUATION

= H)(J),
fo(J) = Ae o) L e=) ] 00 9) The transformation to regularize the equation is remark-

ably simple. We merely redefine the unknown function to
We next perform a Laplace transform of (7) with respect tde g, with
0, and a Fourier transform with respect#goThe result is R
) ) g(m, J,w) = e = mQ()) fi(m, Jw) . (13)
(S + zmQ(J))fl(m, Ja S) - fl(/rna Ja O)

1 e 5 The exponential factor is inessential, being merely a conve-
—fé(J)% / d¢e*1m¢8—¢HC(Q(¢>, J), f1) =0, nience to symmetrize the asymptotic behavior of the kernel
0 in J, J'. Now the integral equation for at realw is de-
(10)  fined in terms of the limit

with f1 the double transform anfi the initial—value term, g(m, J,u) — ieJ/2JZ(m’ J,0)

Fulm, J,s) = 3 [37 dge=™ [ dBe=? [1(, 1. 6) | + lim Z/dJ’H(m’ Jom’, g, J'yw)
; 1 2 =0+ u+iv—m/'QJ) ’
fi(m, J,0) = 5= [;7 e "™dg f1 (e, J,0). m

The integral ony is zero form = 0, from which it fol- H(m,J,m',J') =’ PK(m, Jm/, J)e” "/ (14)

lows that the zero mode does not vary in time under thg H(m,J,m’,J")g(m/, J',u) has some minimal smooth-

linearized Vlasov dynamics. Consequently, there is no regress as a function of’ (for instance, satisfies adttier
son to include a zero mode in studying growth of the percondition [10]), then the limit clearly exists ®(.J) has

turbation. Hencgforttfl(o, J, f) =0 andm # 0in (10).  |ocally linear behavior in a region near a poift where
The force I involves [ dg'dp’ - --, which we replace  — 1»0(.J,) = 0. By Plemelj's theorem [10] (the usual
by [d¢'dJ"---. In view of the symmetryQ(¢,J) = « PV + x5 ” rule extended to functions that need not be

Q(—¢,J) and the definitiorQ, = 0Q/0¢, Eq.(10) takes analytic) , the limit of the integral is then
the form (withm , m’ £ 0)

~ - !/ !/ ! ( /7 J/7 )
(w—mQ(J)) fr(m, J,w) —if(m,J,0) P / dJ H(m, J,m’, J )Ugimm/Q(j;/)
—i—Z/dJ’K(m, Jym! I/, T w) =0, (11) _miH(m, J,m', J)g(m', T, u) (15)
Y /[ ()
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Figure 1. Wake function (V/pC) and distorted well 0.8}/
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Now notice that (15) is smooth i, and falls off nicely J
asm andJ go to infinity, given reasonable smoothness of
the wake function and minimal assumptions @n This Figure 2:() at 1=.03 (upper), I=.0828 (lower) pC/V

is a point that we emphasize strongly, since it is the clue
to showing that the integral-sum operator of (14) is com- 50
pact on a suitable function space. It has an “improving” ef-
fect on the functions to which it is applied, regarding their 10
smoothness and asymptotic behavior. 5

4 NUMERICAL METHOD

For numerical computation we discretize the equation
for g(m, J,w) on a mesh inJ, and truncate the sumon |
m. We set up the discretization so that it is valid for
w =wu+iv ,v > 0. This gives a matrid + A applied to a
vector with componentg(m, J;, w), theJ; forming a mesh
corresponding to equally spaced values\of;. Poles in
the upper halfv—plane, which may be arbitrarily close to )
the real axis, are then found by looking for zeros of theVhen we increasé. It looks as though the frequency of

0 1 2 3 4 5 6
u

Figure 3:| det(1+ A(u +iv,I)| vs. u

determinant of the linear system: the quadrupole mode will be abouB2w;, in agreement
with the value found in simulations and measurements. The
det(14+ A(w, 1)) =0. (16) code is too new to allow confidence in the quantitative ac-

curacy of Fig.(3), but we anticipate that the qualitative pic-
In contrast to the Oide—Yokoya method, we do not get a linture will be similar after the code is refined and validated.
ear eigenvalue problem, but rather the nonlinear equation
(16) for finding coherent modes. Starting at low currént 5 REFERENCES
there will be no zero in the upper half-plane, and at a criti-
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The downward fingers, representing incipient unstable co-
herent modes, ought to reach zero at various values of
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