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Abstract

Beginning with the general Bjorken-Mtingwa solution,
we derive a simplified model of intrabeam scattering (IBS),
one valid for high energy beams in normal storage rings;
our result is similar, though more accurate than a model due
to Raubenheimer. In addition, we show that a modified ver-
sion of Piwinski’s IBS formulation (where η2

x,y/βx,y has
been replaced by Hx,y) at high energies asymptotically ap-
proaches the same result.

1 INTRODUCTION

Intrabeam scattering (IBS), an effect that tends to in-
crease the beam emittance, is important in hadronic[1] and
heavy ion[2] circular machines, as well as in low emittance
electron storage rings[3]. In the former type of machines
it results in emittances that continually increase with time;
in the latter type, in steady-state emittances that are larger
than those given by quantum excitation/synchrotron radia-
tion alone.

The theory of intrabeam scattering for accelerators was
first developed by Piwinski[4], a result that was extended
by Martini[5], to give a formulation that we call here the
standard Piwinski (P) method[6]; this was followed by
the equally detailed Bjorken and Mtingwa (B-M) result[7].
Both approaches solve the local, two-particle Coulomb
scattering problem for (six-dimensional) Gaussian, uncou-
pled beams, but the two results appear to be different; of the
two, the B-M result is thought to be the more general[8].

For both the P and the B-M methods solving for the
IBS growth rates is time consuming, involving, at each
time (or iteration) step, a numerical integration at every
lattice element. Therefore, simpler, more approximate
formulations of IBS have been developed over the years:
there are approximate solutions of Parzen[9], Le Duff[10],
Raubenheimer[11], and Wei[12]. In the present report we
derive—starting with the general B-M formalism—another
approximation, one valid for high energy beams and more
accurate than Raubenheimer’s approximation. We, in addi-
tion, demonstrate that under these same conditions a mod-
ified version of Piwinski’s IBS formulation asymptotically
becomes equal to this result.

2 HIGH ENERGY APPROXIMATION

2.1 The General B-M Solution[7]

Let us consider bunched beams that are uncoupled, and
include vertical dispersion due to e.g. orbit errors. Let the
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intrabeam scattering growth rates be
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with σp the relative energy spread, εx the horizontal emit-
tance, and εy the vertical emittance. The growth rates ac-
cording to Bjorken-Mtingwa (including a

√
2 correction

factor[13], and including vertical dispersion) are
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where i represents p, x, or y;

A =
r2
0cN

64π2β̄3γ4εxεyσsσp
, (3)

with r0 the classical particle radius, c the speed of light, N
the bunch population, β̄ the velocity over c, γ the Lorentz
energy factor, and σs the bunch length; (log) represents
the Coulomb log factor, 〈〉 means that the enclosed quan-
tities, combinations of beam parameters and lattice prop-
erties, are averaged around the entire ring; det and Tr sig-
nify, respectively, the determinant and the trace of a matrix,
and I is the unit matrix. Auxiliary matrices are defined as
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The dispersion invariant is H = [η2 + (βη′ − 1
2β′η)2]/β,

and φ = η′ − 1
2β′η/β, where β and η are the beta and

dispersion lattice functions.

The Bjorken-Mtingwa Solution at High Energies

Let us first consider 1/Tp as given by Eq. 2. Note that if
we change the integration variable to λ ′ = λσ2

H/γ2 then

(L + λ′I) =
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H
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Note that, other than a multiplicative factor, there are only
4 parameters in this matrix: a, b, ζx, ζx. Note that, since
βφ2 ≤ H, the parameters ζ < 1; and that if H ≈ η2/β
then ζ is small. We give, in Table 1, average values of a, b,
ζx, in selected electron rings.

Table 1: Average values of a, b, ζx, in selected electron
rings. The zero current emittance ratio ∼ 0.5% in all cases.

Machine E[GeV] N [1010] 〈a〉 〈b〉 〈ζx〉
KEK’s ATF 1.4 .9 .01 .10 .15
NLC 2.0 .75 .01 .20 .40
ALS 1.0 5. .015 .25 .15

Let us limit consideration to high energies, specifically
let us assume a,b � 1 (if the beam is cooler longitudinally
than transversely, then this is satisfied). We note that all
3 rings in Table 1, on average, satisfy this condition rea-
sonably well. Assuming this condition, the 2nd term in
the braces of Eq. 2 is small compared to the first term, and
we drop it. Our second assumption is to drop off-diagonal
terms (let ζ = 0), and then all matrices will be diagonal.

Simplifying the remaining integral by applying the high
energy assumption we finally obtain
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with
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A plot of g(α) over the interval [0 < α < 1] is given in
Fig. 1; to obtain the results for α > 1, note that g(α) =
g(1/α). A fit to g,

g(α) ≈ α(0.021−0.044 lnα) [for 0.01 < α < 1] ,
(13)

is given by the dashes in Fig. 1. The fit has a maximum
error of 1.5% over [0.02 ≤ α ≤ 1].

Similarly, beginning with the 2nd and 3rd of Eqs. 2, we
obtain

1
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≈ σ2
p〈Hx,y〉
εx,y

1
Tp

. (14)

Our approximate IBS solution is Eqs. 11,14. Note that
Parzen’s high energy formula is a similar, though more ap-
proximate, result to that given here[9]; and Raubenheimer’s
approximation is Eq. 11, with g(a/b)σH/σp replaced by 1

2 ,
and Eqs. 14 exactly as given here[11].

Note that the beam properties in Eqs. 11,14, need to be
the self-consistent values. Thus, for example, to find the

Figure 1: The auxiliary function g(α) (solid curve) and the
approximation, g = α(0.021−0.044 ln α) (dashes).

steady-state growth rates in electron machines, iteration
will be required[6]. Note also that these equations assume
that the zero-current vertical emittance is due mainly to ver-
tical dispersion caused by orbit errors; if it is due mainly to
(weak) x-y coupling we let Hy = 0, drop the 1/Ty equa-
tion, and let εy = κεx, with κ the coupling factor[3].

What sort of error does our model produce? Consider a
position in the ring where ζy = 0. In Fig. 2 we plot the
ratio of the local growth rate T −1

p as given by our model to
that given by Eq. 2 as function of ζx, for example combi-
nations of a and b. We see that for ζx �

√
be(1−√

b) (which
is typically true in storage rings) the dependance on ζx is
weak and can be ignored. In this region we see that the
model approaches B-M from above as a,b → 0. Finally,
adding small ζy 	= 0 will reduce slightly the ratio of Fig. 2.

Figure 2: The ratio of local growth rates in p as function of
ζx, for b = 0.1 (blue) and b = 0.2 (red) [ζy = 0].

3 COMPARISON TO PIWINSKI

3.1 The Standard Piwinski Solution[6]

The standard Piwinski solution is
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ã =
σh

γ

√
βx

εx
, b̃ =

σh

γ

√
βy

εy
, q = σhβ

√
2d

r0
;

(17)
the function f is given by:
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P 2 = ã2 +(1− ã2)u2, Q2 = b̃2 +(1− b̃2)u2 . (19)

The parameter d functions as a maximum impact parame-
ter, and is normally taken as the vertical beam size.

3.2 Comparison of Modified Piwinski to the B-
M Solution at High Energies

We note that Piwinski’s result depends on η2/β, and not
on H and φ, as the B-M result does. This may suffice for
rings with 〈H〉 ≈ 〈η2/β〉. For a general comparison, how-
ever, let us consider a formulation that we call the modified
Piwinski solution. It is the standard version of Piwinski,
but with η2/β replaced by H (i.e. ã, b̃, σh, become a, b,
σH , respectively).

Let us consider high energy beams, i.e. let a,b � 1:
First, notice that in the integral of the auxiliary function f
(Eq. 18): the −0.577 can be replaced by 0; the −3u2 in
the numerator can be set to 0; P (Q) can be replaced by√

a2 + u2 (
√

b2 + u2). The first term in the braces can be
approximated by a constant and then be pulled out of the
integral; it becomes the effective Coulomb log factor. Note
that for the proper choice of the Piwinski parameter d, the
effective Coulomb log can be made the same as the B-M
parameter (log). For flat beams (a � b), the Coulomb log
of Piwinski becomes (log) = ln [dσ2

H/(4r0a
2)].

We finally obtain, for the first of Eqs. 15,
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We see that the the approximate equation for 1/Tp for high
energy beams according to modified Piwinski is the same
as that for B-M, except that h(a, b) replaces g(a/b). But
for a,b small, h(a, b) ≈ g(a/b), and the Piwinski result
approaches the B-M result. For example, for the ATF with
εy/εx ∼ 0.01, a ∼ 0.01, a/b ∼ 0.1, and h(a, b)/g(a/b) =
0.97; the agreement is quite good.

Finally, for the relation between the transverse to longi-
tudinal growth rates according to modified Piwinski: note
that for non-zero vertical dispersion the second term in the
brackets of Eqs. 15 (but with η2

x,y/βx,y replaced by Hx,y),
will tend to dominate over the first term, and the results
become the same as for the B-M method.

In summary, we have shown that for high energy beams
(a,b � 1), in normal rings (ζ not very close to 1): if the
parameter d in P is chosen to give the same equivalent
Coulomb log as in B-M, then the modified Piwinski solu-
tion agrees with the Bjorken-Mtingwa solution.

4 NUMERICAL COMPARISON[3]

We consider a numerical comparison between results of
the general B-M method, the modified Piwinski method,
and Eqs. 11,14. The example is the ATF ring with no cou-
pling; to generate vertical errors, magnets were randomly
offset by 15 µm, and the closed orbit was found. For this
example 〈Hy〉 = 17 µm, yielding a zero-current emittance
ratio of 0.7%; the beam current is 3.1 mA. The steady-state
growth rates according to the 3 methods are given in Ta-
ble 2. We note that the Piwinski results are 4.5% low, and
the results of Eqs. 11,14, agree very well with those of B-
M. Additionally, note that, not only the (averaged) growth
rates, but even the local growth rates around the ring agree
well for the three cases. Finally, note that for coupling
dominated NLC, ALS examples (κ = 0.5%, see Table 1)
the error in the steady-state growth rates (T −1

p ,T−1
x ) ob-

tained with the model is (12%,2%), (7%,0%), respectively.

Table 2: Steady-state IBS growth rates (in [s−1]) for an
ATF example with vertical dispersion due to random errors.

Method 1/Tp 1/Tx 1/Ty

Modified Piwinski 25.9 24.7 18.5
Bjorken-Mtingwa 27.0 26.0 19.4
Eqs. 11,14 27.4 26.0 19.4

The author thanks A. Piwinski, K. Kubo and other coau-
thors of Ref. [3] for help in understanding IBS theory;
K. Kubo, A. Wolski, C. Steier, for supplying the lattices
of the ATF, NLC, ALS rings, respectively.
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