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Abstract 
A metal coating is required on the inner surface of the 

ceramic injection kicker vacuum chambers of the 
Spallation Neutron Source (SNS) for two reasons. First, a 
coating shields the ceramic surface from the beam to 
reduce the secondary emission (TiN is the candidate for 
the coating because of the low secondary emission 
coefficient). Secondly, a coating is required to suppress 
penetration of the beam fields into the kicker at dangerous 
beam frequencies (about 1 MHz). The choice for the 
metal thickness is determined by the resulting impedance 
and eddy-current limitations. Here we present an 
improved model for the coating impedance, which shows 
significant deviation from the handbook expressions at 
low frequencies. 

1 INFINETELY LONG PIPE 
In earlier papers (see [1] and references therein) the 
coating impedance was estimated in the simple model of 
an infinitely long pipe. Figure 1 shows the layers of this 
pipe. A thin metallic layer with conductivity σ and 
thickness dm  is on the inner surface of a ceramic layer, 
ceramic layer (yellow in the figure) has permittivity equal 
to ε and thickness dc. The next layer is either air or air and 
a superconducting surface. These two cases give the same 
result.  
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Figure 1 Infinitely long pipe used before for the coating 

impedance calculations 

 Here we present longitudinal impedance  from formula 
(8) in [1], p. 203: 
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2 FINITE LENGTH CASE - CAVITY, 
SHIELDED FROM THE BEAM BY A 

COATING LAYER 
In this section we show that at least for low frequencies 

(wavelength much larger than the dimensions of the 
kicker) formula (1) should be significantly modified. 
Figure 2 shows the configuration and the notations. All 
the parts of the assembly are considered to be azimuthally 
symmetric for simplicity (though in practice the kicker 
yoke is not) in order to get a first approximation for the 
impedance.  
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Figure 2. Simplified injection kicker model with coating. 

 
    Let's start with the layer-by-layer solutions for the 

fields. The vacuum chamber field and the coating layer 
has the same form of the solutions: 
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  Inside the cavity at the coating-ceramic boundary 
electric to magnetic field ratio can be estimated from low 
frequency approximation through the Faraday's law: 
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where µ is the average permeability of the cavity. 

Using the relation 
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determination, one can get for the impedance: 
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are impedances per unit length of the metal and the 
cavity. 

If we have two layers, a similar analysis gives the 
following impedance: 
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where subscripts 1,2 stand for the first (nearest to the 
beam) and the second coating layer, respectively. When 
both skin depths are large compared to the layer thickness 
and the cavity impedance is much larger than the 
resistance of the layers, formula (5) gives the simple 
result: 
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where 
σπ 2,1

2,1 2
1

mbd
Z =  are just DC resistances of 

the layers per unit length. It means that the layers 
impedance is equivalent to that of a parallel circuit of the 
two resistances. 

Figure 3 shows the results of these calculations 
compared with the Piwinski result.  Shown is the 
longitudinal impedance of a TiN layer (resistivity 45 µΩ 
cm, thickness 18 µm) on the inner surface of the SNS 
ceramic chambers (relative permittivity 10, inner radius 8 
cm, thickness 1.25 cm and total length of 5m).  Three 
cases are shown.  The first shows the Piwinski (infinite 
geometry) result.  The second shows the realistic case 
displayed in figure 2 for a 0.1m cavity height and relative 
permeability of 1000.  The third curve shows the case in 

which the external �cavity� is formed by a perfect 
conductor on the outer surface of the ceramic chamber.  
We see that the Piwinski result and the case of the perfect 
external conductor show good agreement over the 
frequency range considered.  The more realistic case of 
the kicker geometry gives an impedance which equals the 
DC resistance of the coating over the entire range of 
frequencies considered.  This can be easily understood by 
realizing that the resulting impedance is the parallel 
combination of the coating resistance and the external 
circuit, which is quite large for all but the very smallest 
frequencies.  Therefore, the image current flows through 
the metallic coating and the resulting impedance is simply 
the DC resistance of the coating.  

Longitudinal Impedance of Coated Ceramic Chamber
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Figure 3: Real part of the longitudinal impedance of a 

ceramic chamber with thin metallic coating.  Three cases 
are shown: i) the Piwinski result for an infinitely long 

chamber, ii) this result with a kicker model as shown in 
figure 2, and iii) this result with a perfect conductor on 

the outside of the ceramic chamber 

3 TRANSVERSE IMPEDANCE  
                      

The transverse resistive impedance can be found using the 
quasi-static approximation, where responses to the beam 
electric and magnetic dipoles are calculated separately 
[3,4]. For the magnetic dipole, only longitudinal 
component of the vector potential is non-zero; when its 
dependence on the longitudinal coordinate is neglected, it 
automatically satisfies the Coulomb gauge. The 
contribution of the electric dipole is trivial, since we 
assume that the transverse electric field is shielded at the 
coating radius. The magnetic dipole produces the vector 
potential )exp(cos tiAz ωθ −∝ : 
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where x0 is the displacement of a point current I0  from 
the axis. Using again the quasi-stationary relation 
between Es and Bθ : 
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following condition for the vector potential at the coating 
outer boundary: 
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  Two other conditions are given by the continuity of 
the potential and its radial derivative at the inner 
boundary. Along with condition (13) they produce the 
following set of equations for coefficients : ic
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   Including contribution of the electric dipole, the 

transverse impedance is calculated as: 
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where we neglected term tanh(κdm)/κb in the 
denominator. The result (11) transforms to one with 
radially unbounded magnetic [4] after a substitution 

. bd →
The formulae (7) and (11) agree at high frequency but 

deviate at low frequency. Namely, in the denominator of 
formula (11) a term µd/b starts to dominate the hyperbolic 
tangent term when the skin depth approaches mad . It 
happens for the region about 100 kHz for a 10 microns 
TiN coating. Another form of the transverse impedance 
(11) is: 
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where Zmet and Zcavity are given after formula (4). 
Figure 4 shows these results for the transverse 

impedance compared with the Piwinski result.  The same 
three cases shown for the longitudinal impedance are 
shown here.   Our result for a perfect external conductor 
on the surface of the ceramic chamber agrees with the 
Piwinski result for infinite geometry.  The result for the 
realistic kicker geometry shown in figure 2 is higher than 
the Piwinski result by a factor of 2-3 in the frequency 
range of importance for transverse resistive wall 
instabilities (0.2-0.7 MHz).  At lower frequencies, our 
results show transverse impedance, which is more than an 

order of magnitude larger than that predicted by the 
infinite geometry result. 

Transverse Impedance of Coated Ceramic Chamber
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Figure 4: Real part of the transverse impedance of a 

ceramic chamber with thin metallic coating.  Three cases 
are shown: i) the Piwinski result for an infinitely long 

chamber, ii) this result with a kicker model as shown in 
figure 2, and iii) this result with a perfect conductor on 

the outside of the ceramic chamber. 

4 CONCLUSION 
New formulae for the coating impedance are obtained. 

They show that in order to estimate the impedance, a 
knowledge of the surrounding impedance is needed. For 
most of the interesting frequencies (around 1 MHz) the 
image current squeezes through the coating, shielding the 
outer chambers from the beam fields. But for very low 
frequencies (below 100 kHz in our case when the skin 
depth reaches mad  value), the transverse impedance 
rapidly goes to zero, which eases the problem of closed 
orbit deviations due to collective fields. 
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