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Abstract

In this paper methods of the construction of magnetic
fields forming given beam dynamics are developed. We
consider this problem as the inverse problem of
determination of magnetic field by preassigned motion of
charged particles. Different inverse problems of
electrodynamics have always been the subject of attention
of many researchers. Attempts to find approaches to the
solving of problems of such kind had been undertaken for
along time. Similar problems had been considered in the
works of G.A.Grinberg, A.R.Lucas, B.Médtzer,
V.T.Ovcharov, V.I.Zubov [1-5]. In this paper numerical-
analytical method of finding magnetic field is devel oped.
The investigated problem is reduced to the solving of the
Goursat problem for quasi-linear system of differential
equations with partial derivations. To solve this problem
the method of characteristics and the Masso method are
developed.

1INTRODUCTION

We consider the following approach to the problem of
beam dynamics formation in magnetic field. Let us have
the velocitiesfield
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Here r,6,z are cylindrical coordinates, 7,(r,6,z),
Ng(r,6,2),n,(r,0,z) are components of the given vector
function 77 in cylindrical system of coordinates, tistime.

Let us describe charged particle motion in stationary
magnetic field by the system of differential equations
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dt
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where we have Y =(Y,,Y,.,Y,) as particle velocity
vector in cylindrica system of coordinates, mis
particle mass, eis particle charge, B =(B,,B,,B,) is
vector function, determining magnetic induction.

It is necessary to find stationary magnetic field (i.e.
vector function B which satisfies Maxwell eguation
div B =0) in which charged particles motion accords to
the velocities field (1). This means that in configuration
space charged particles trajectories determined by system
(2) under the same initial conditions will coincide with
trajectories of the system (1). We have the following
theorem [6].

Theorem 1. Let n be given twice continuously

differentiable vector function, and /7% = const. Then such

magnetic field exists in which charged particles motions
defined by the system (2) coincides with motions of the
system (1), when initial conditions of these motions are
the same. This magnetic field B can be represented in the
form

g=-1 rot 7 +hn,
€

where h=h(r,6,z) isan arbitrary function satisfying the
following condition
div (hp)=0.

2PROBLEM STATEMENT

In this paper we consider in details the problem of
charged particles dynamics formation in the case of
stationary axially symmetric magnetic field, i.e. we
suppose that By =0, B, =B,(r,z), B, =B,(r,2). In
many problems of focusing and transportation of charged
particles we are interested in particles behavior in the
plane (r,z). Therefore, we consider the following

statement of the problem. Let us suppose, velocities field
isgiven, as
dr
—=flr,z), 3
el T ®)

i.e f(r,z) isagiven function, which provides the needed
motion of charged particlesin the plane (r,z).

It is needed to find stationary axialy symmetric
magnetic field in which the charged particles motions
describe by the system (2) coincide with the motions
determined by the equation (3) inthe plane (r,z).

Let us consider the following system of differential
equations [6]:
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Here q=c? - L2/r?, g:h%z, I :gL/rz,

d, :%Lz/r3 —qu+rg(q(1+ fz))%,

F :(gfz+gfrfj/(1+ fz),

d, = h(cfl+q(g—f— fFD , ¢, is a total velocity of
r r
particle.
We assume, the solution of the system (5) will be twice

continuously differentiable vector function L =L(r,2)

and continuously differentiable vector function
h=h(r,z) making this eguations in identities. We can
formulate the following theorem [6].

Theorem 2. For arbitrary continuously differentiable
function f , for which the solution of the system (4)
exists, there is such axially symmetric magnetic field B,
where charged particle motions determined by system (2)
coincides in the plane (r, z) with the motions of equation
(3). The considered motions had of course the same initial
conditions. The components of magnetic field Bare
determined by the formulae
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Further we will consider the algorithm of numerical
finding of these components.

3THE CHARACTERISTIC EQUATIONS

Thus, in the case of axially symmetric stationary
magnetic field the problem of charged particle dynamics
formation is reduced to solving system (4). It is the
system of quasi-linear partial differential equations of the
first order. The system (4) depends on some arbitrary
function f(r,z) determining the velocities field in the

plane (r,z). Under any choice of this function the system

(4) will be the hyperbolic system. We consider the way of

solving this system on the base of characteristics method.
Let us write out for it the equations of characteristic

directions and differential correlation for them.

Thefirst family:

dr = fdz ©
qdh+gdL -d,dz=0
The second family:
dz=—fdr
ldL-d,dr =0 0

Characteristics directions equations are determined just
by the function f(r,z) and they do not depend on
unknown functions.

4 GOURSAT PROBLEM

Let us consider the problem of finding solution for the
system (4). For numerical solving of this problem it is
necessary to assign additional conditions. Using
differentia correlations (6), (7) for the system (4) we will
consider the Goursat problem, i.e. we will search for the
solutions L(r,z), h(r,z)of the system (4) under the
condition that on two characteristics, outgoing from one
point, valuesof L and h aregiven.

We will assume that function f(r,z), defining
velocities field is such that f(0,z)= f(r,0)=0. It is not
difficult to notice that in such case straight line r =0 is
characteristic for the first family and the straight line
z =0 for the second one.

Let us formulate Goursat problem in the following way.
To find the solution of the system (6) assuming that
function L and h are given on characteristics r =0 and
z=0

L(O, z) =L,o(2 ,h(O, z) = h,o(z),OS z< 7,

L(r,0)= Lo(r), h(r,0)=hy(r),0<r<r,,
here L,q(2), Lo(r), ho(2), h(r) are given functions,
z,, I, ae given vaues. In additiona, values of
corresponding  functions, given on characterigtics,
coincidein the generic point

LrO(O) = LZO(O)’ hrO(O) = I’120 (0) .
Naturally, it is supposed, that given functions
L,o(2),L,(r),h(2),h,o(r) on every characteristics are
such that differential characteristics equations satisfied.
Further we examine one of possible ways of L and h
functions  assignment on the  corresponding
characteristics. Let L,, =0, L,(r)=-kr?, here kis
some constant. We determine the values of function hon
mentioned above characteristics, i.e. functions
h,¢(2),h,(r) , using corresponding differential equations
on considered characteristics. Asresult we get
m (2 22yv2_ m of 2 _ 2,22

h,o(r) = ——Kklc{ —k°r -——(r,0)lc{ —k“r ,

wo(r) = = 2kle? - ke ¥ - L o)fe? -k

and by solving differential equation
dh,o + h,o[i (0,2) +ﬂ(o, z))dz =0
r or
mk _ me,

with initial condition h,, = -— (af/r](o,o) we
ec, ek |oz

will find the function h,4(2) .

5MASSO METHOD

For the construction of numerical solution of Goursat
problem we will use Masso method, based on the
substitution of differential equations of characteristics for
corresponding finite difference equations.

Let us consider equations of characteristic directions,
obtained above
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dr = fdz, (8)
dz=—fdr. (9)
They determine two orthogonal characteristic families. As
differential equations of characteristic directions not
depend on functions L, h, so at first we can construct
network, formed by intersection of characteristic families,
i.e. we will find the coordinates of points (i, j): r(i, j)
and z(i,j), i=1..,n, j=1..m. The system for
coordinates determination of point(i,j), i=1..,n,
j =1...,m isfollowing
rG0) =G -1 )+ fufor, j -1+
fy(z, ) =D - 2( -1 )))/@+ f, ),
20, j) = (2, -1 + T, F,2( -1, ]) +
fp(r(i, j =0 - r(i =1 ))/@+ f, 1),
where f; = f(r(i—1),z(i -1 j)) is value of function f
in the point (i-1j), f,=f(( j-1,2G0j-2) is
value of function f inthepoint (i, -1).

Afterwards we will calculate values of function L and h
in nodes of obtained network. We consider the
characteristic differential equations (6), (7) for the system
(4). By replacing differentias in differential correlations
on corresponding characteristics by finite differences we
get system of equations for determination of L and h
values in point (i, j), when L and h values in points

(i-1j) and (i, j -1 areknown
LG )= L6 =)+ =306 D =r G, §-D),
NG 1) = -11)+ 1L D - L6 5) -

%Z(i ~L )z, ) -2 -1 )

Let us consider formulae (5) for determination of
magnetic field components through the functions L and
h being the solution of the system. Under numerical
solving of the system (4) we will find the numerical
values of magnetic fields components. We will find
numerical values B, (i, j), B,(i, j) by numerical vaues

of L(i, j) and h(i, j) in nodes of the network. Derivative

% along to the solutions of the system (9) and derivative
r

3—" along to the solutions of the system (8) have the form
z

d_o_ o
o oz’
d. _adL oL
—=—+f—.
dz oz or
. . _— oL oL
Hence we can find partial derivatives a—and 5 as
r z

such

oL _fdL gdb (1+f2)
or dr dz
oL _ ﬁ_f$ (1+f2)
0z dz dr

oL oL

To get numerical meanings of m and 5 in nodes of
r z

network it is necessary to replace in (11) differentials by
corresponding finite differences

)= (L0 5+~ LG DY +D =),

(10)

%(i,j):(L(i+11)—L<i,j))/(z(i+Lj)—z(i,1))-
Thus B, (i, j), B,(i, j) magnetic field componentsin the

network nodes are determined by formulae (5), where the

values of g—lr'g—l' L, h, f,r are taken in corresponding
z

points (i, j) .

6 CONCLUSION

The proposed method allows to find the magnetic field,
initiating the needed motions of charged particles. We
shall note that choice of functions L,q(2), L,o(r) contains

some difficulty. Although obtained magnetic field will
satisfy the main task of providing given dynamics of
charged particles, it may, however, be that this magnetic
field does not satisfy one or another practical requirement
connected with realization of this field. Bearing this in
mind, these functions can be considered as control
functions. So, we can consider not only the problem of
magnetic field finding, providing given dynamics of
charged particles, but needed characteristics of magnetic
field.
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